УДК 519.676 + 621.391

Анализ систем управления ансамблем траекторий с учетом случайного изменения структуры на примере системы стабилизации малого искусственного спутника¹

Т.А. Аверина, К.А. Рыбаков

Аннотация

Рассматривается задача анализа нелинейных систем управления ансамблем траекторий с учетом случайного изменения структуры системы и два метода ее решения: метод статистического моделирования и спектральный метод. Разработанные методы и алгоритмы применяются к задаче анализа системы стабилизации малого спутника.

Ключевые слова:

система управления ансамблем траекторий; система со случайной структурой; метод статистического моделирования; спектральный метод; стабилизация

Введение

В работе рассматривается задача анализа системы стабилизации малого искусственного спутника, находящегося под действием гравитационного и управляющего моментов, с учетом возможного отказа управляющего устройства.

Вопросы, связанные с актуальностью разработки и применения малых искусственных спутников стандарта CubeSat (нано-спутников и пико-спутников), достаточно подробно освещены в работах [1–3]. В качестве примеров можно привести международную систему Disaster Monitoring Constellation, позволяющую производить мониторинг катастроф по всему миру; норвежский спутник nCube, отслеживающий перемещение кораблей по территориальным водам Норвегии; проект AAUSAT, предназначенный для получения детальных изображений Земли; спутник UWE-1 (Вюрцбургский университет), позволяющий анализировать

¹ Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (темы № 09-01-00798, № 08-01-00334).

использование технологий TCP/IP для телеметрических и телекомандных данных с учетом проблем задержек и помех; японский проект XI, созданный для демонстрации и тестирования систем спутниковой платформы с использованием готовых элементов, включая проверку аппаратуры спутника в условиях реального орбитального полета.

Учет возможных отказов управляющего устройства (например, срывов стабилизации) в случайные моменты времени приводит к необходимости использования моделей систем со случайной структурой [4].

Отметим, что в настоящей работе задача рассматривается в достаточно общей постановке, а именно как задача анализа многомерных нелинейных систем управления ансамблем траекторий [5] с учетом случайного изменения структуры системы. Для решения этой задачи применяются два подхода: метод статистического моделирования [6, 7], основанный на моделировании траекторий системы управления, и спектральный метод [8], в основе которого лежит переход к детерминированной задаче нахождения плотности вероятности вектора состояния как наиболее полной характеристики. Оба метода позволяют оценивать любые вероятностные характеристики выходных процессов, в том числе и плотность вероятности. Аналогичные подходы были использованы авторами при анализе стохастических мультиструктурных систем с распределенными переходами [9].

Постановка задачи анализа нелинейных систем управления ансамблем траекторий

Пусть $[\mathbf{y}(t), s(t)]^{T}$ – смешанный процесс, где s(t) – дискретный случайный процесс с конечным множеством состояний $\{1, 2, ..., S\}$, S – число структур системы, а $\mathbf{y}(t)$ – n -мерный непрерывный процесс, описываемый при условии s(t) = l дифференциальным уравнением

$$\frac{d\mathbf{y}(t)}{dt} = f^{(l)}(t, \mathbf{y}(t)), \quad \mathbf{y}(t_0) = \mathbf{y}_0 \in \Omega \subset \mathbb{R}^n, \tag{1}$$

где $t \in [t_0, T]$; $f^{(l)}(t, \mathbf{y})$: $[t_0, T] \times \mathbb{R}^n \to \mathbb{R}^n$ – вектор-функция размера n; l – номер структуры системы (l = 1, 2, ..., S); множество Ω ограничено.

Вероятность перехода дискретного случайного процесса s(t) удовлетворяет следующему условию [4]:

$$P(s(t + \Delta t) = r \mid s(t) = l, \mathbf{y}(t) = \mathbf{y}) = v_{lr}(t, \mathbf{y})\Delta t + o(\Delta t),$$

$$P(s(t + \Delta t) = l \mid s(t) = l, \mathbf{y}(t) = \mathbf{y}) = 1 - v_{ll}(t, \mathbf{y})\Delta t + o(\Delta t),$$

$$s(t_0) = s_0, \quad l, r = 1, 2, ..., S, \quad l \neq r,$$
(2)

где функция $v_{lr}(t, \mathbf{y}) : [t_0, T] \times \mathbb{R}^n \to [0, +\infty)$ называется интенсивностью перехода, $v_{ll}(t, \mathbf{y}) = \sum_{r=1 \neq l}^{S} v_{lr}(t, \mathbf{y})$. Данное условие обеспечивает при любом фиксированном $\mathbf{y} \in \mathbb{R}^n$ отсутствие нескольких переключений процесса s(t) за малый интервал времени Δt . Предполагается, что в моменты переключения траектории процесса $\mathbf{y}(t)$ остаются непрерывными, т.е. рассматривается случай точного восстановления реализаций [4, 10].

Система, описываемая соотношениями (1) и (2), является частным случаем стохастической мультиструктурной системы с распределенными переходами (при отсутствии случайных возмущений, действующих на объект управления).

Следуя [4, 9], процесс s(t) будем называть процессом смены структуры, $[\mathbf{y}(t), s(t)]^{T}$ – процессом со случайной структурой, а систему, описываемую уравнениями (1) и (2), – системой управления ансамблем траекторий с учетом случайного изменения структуры. Кроме того, при фиксированном $t \in T$ будем называть $\mathbf{y}(t)$ вектором состояния, а $[\mathbf{y}(t), s(t)]^{T}$ – расширенным вектором состояния.

Наиболее полной вероятностной характеристикой расширенного вектора состояния является упорядоченная совокупность *ненормированных плотностей распределения* $p^{*(l)}(t, \mathbf{y}) : [t_0, T] \times \mathbb{R}^n \rightarrow [0, +\infty)$ вектора состояния (l = 1, 2, ..., S), удовлетворяющих условию

$$\sum_{l=1}^{5} \int_{R^{n}} p^{*(l)}(t, \mathbf{y}) d\mathbf{y} = 1, \quad t \in [t_{0}, T].$$
(3)

Начальное состояние $[\mathbf{y}_0, s_0]^{\mathrm{T}}$ описывается заданными ненормированными плотностями распределения $p_0^{*(l)}(\mathbf{y})$ или начальной плотностью $p_0(\mathbf{y})$ и вероятностями $P_0^{(l)} = P(s(t_0) = l)$ того, что структура системы имеет номер l, при этом $p_0^{*(l)}(\mathbf{y}) = P_0^{(l)} p_0(\mathbf{y})$; l = 1, 2, ..., S.

Известно [4], что ненормированные плотности распределения $p^{*(l)}(t, \mathbf{y})$ удовлетворяют системе обобщенных уравнений Фоккера-Планка-Колмогорова (при нулевой матрице диффузии):

$$\frac{\partial p^{*(l)}(t,\mathbf{y})}{\partial t} = -\sum_{i=1}^{n} \frac{\partial}{\partial y_i} \Big[f_i^{(l)}(t,\mathbf{y}) p^{*(l)}(t,\mathbf{y}) \Big] - v_{ll}(t,\mathbf{y}) p^{*(l)}(t,\mathbf{y}) + \sum_{r=1\neq l}^{S} v_{rl}(t,\mathbf{y}) p^{*(r)}(t,\mathbf{y}),$$

$$p^{*(l)}(t_0,\mathbf{y}) = p_0^{*(l)}(\mathbf{y}), \quad l = 1, 2, ..., S.$$
(4)

Вероятность того, что в момент времени t структура системы имеет номер l, т.е. s(t) = l, задается выражением

$$P^{(l)}(t) = \int_{\mathbb{R}^n} p^{*(l)}(t, \mathbf{y}) d\mathbf{y}, \quad l = 1, 2, \dots, S,$$

а плотность вероятности $p^{(l)}(t, \mathbf{y})$ вектора состояния при условии s(t) = l связана с $p^{*(l)}(t, \mathbf{y})$ следующим соотношением:

$$p^{*(l)}(t, \mathbf{y}) = P^{(l)}(t) p^{(l)}(t, \mathbf{y}), \quad l = 1, 2, ..., S.$$

Безусловная плотность вероятности $p(t, \mathbf{y})$ вектора состояния определяется в виде

$$p(t,\mathbf{y}) = \sum_{l=1}^{S} p^{*(l)}(t,\mathbf{y})$$
 или $p(t,\mathbf{y}) = \sum_{l=1}^{S} P^{(l)}(t) p^{(l)}(t,\mathbf{y}).$

Таким образом, задача анализа систем управления ансамблем траекторий (1), (2) состоит в нахождении ненормированных плотностей распределения $p^{*(l)}(t, \mathbf{y})$ вектора состояния по заданным функциям $f^{(l)}(t, \mathbf{y})$, интенсивностям $v_{lr}(t, \mathbf{y})$ и ненормированным плотностям распределения $p_0^{*(l)}(\mathbf{y})$; l, r = 1, 2, ..., S.

Наряду с нахождением функций $p^{*(l)}(t, \mathbf{y})$ можно рассматривать задачу нахождения маргинальных плотностей вероятности и моментных характеристик вектора состояния (в том числе взвешенных и условных), а также задачу определения вероятностных характеристик времени перехода из одной структуры в другую [4, 7, 10].

Анализ систем управления ансамблем траекторий методом статистического моделирования

Опишем статистический алгоритм [6, 11, 12] решения задачи анализа систем управления ансамблем траекторий.

Статистический алгоритм должен в себя включать: численное решение обыкновенного дифференциального уравнения (ОДУ) (1), а также моделирование моментов смены структуры и номера новой структуры. В рассматриваемом случае распределение моментов смены структуры определяется интенсивностями переходов (2). Так как интенсивности переходов зависят от вектора состояния, то моделирование моментов смены структуры будет осуществляться по «методу максимального сечения» [13]. Применение этого метода требует выполнения условий $v_{li}(t, \mathbf{y}) \leq \overline{v}_{li} = const, i = 1, 2, ..., S, i \neq l$, на всем интервале интегрирования $[t_0, T]$.

Алгоритм моделирования траекторий процесса $[\mathbf{y}(t), s(t)]^{\mathrm{T}}$:

0) k := 0; моделируем $[\mathbf{y}_0, s_0]^{\mathrm{T}}$ согласно заданным ненормированным плотностям распределения $p_0^{*(l)}(\mathbf{y}), l = 1, 2, ..., S$; 1) $l := s_k$; моделируем возможный момент выхода из l-й структуры $t_{k+1} = t_k + \tau$, где τ – случайная величина с плотностью $p(x) = \overline{v}_l \exp(-\overline{v}_l x)$, $\overline{v}_l = \sum_{i=1 \neq l}^{S} \overline{v}_{li}$ (по формуле $\tau = -\frac{\ln \alpha}{\overline{v}_l}$, α – равномерно распределенная случайная величина на интервале (0,1));

если $t_{k+1} > T$, то $t_{k+1} := T$;

- 2) моделируем номер *r* (возможный номер новой структуры) с вероятностью $p_r = \frac{V_{lr}}{\overline{V_l}}$, $r \neq l$, $r = 1, \dots, S$:
- 3) решаем уравнение (1) для *l*-й структуры на интервале $[t_k, t_{k+1}]$ численным методом с шагом *h* и находим \mathbf{y}_{k+1} вектор состояния системы в момент t_{k+1} , при этом шаг должен быть согласован с интенсивностью перехода, например, $h \leq \frac{0.1}{\overline{V}}$;
- 4) k := k + 1;
- 5) проверяем условие смены структуры: если $\alpha_1 \leq \frac{v_{lr}(t_k, \mathbf{y}_k)}{\overline{v}_{lr}}$ (α_1 равномерно распреде-

ленная случайная величина на (0,1)), то переходим к п. 6; иначе переходим к п. 7;

- 6) меняем номер структуры на r-й: $s_k := r$;
- 7) если $t_k < T$, то переходим к п. 1, иначе процесс моделирования завершается.

Заметим, что пункт 5 в алгоритме будет отсутствовать, если интенсивности переходов постоянны, так как проверяемое условие будет всегда истинно.

Выбор численного метода решения конкретной системы ОДУ и шага интегрирования *h* определяются видом этой системы и требуемой точностью вычисления вероятностных характеристик выходных процессов. Для различных структур могут использоваться разные численные методы с различными шагами интегрирования.

Существует много численных методов решения задачи Коши для систем ОДУ. Например, можно использовать *обобщенный одностадийный метод типа Розенброка* [14]:

$$\mathbf{y}_{k+1} = \mathbf{y}_{k} + \left[E - \frac{h}{2} \frac{\partial f^{(l)}(t_{k}, \mathbf{y}_{k})}{\partial \mathbf{y}} \right]^{-1} f^{(l)}(t_{k}, \mathbf{y}_{k})h,$$
(5)

где через *E* обозначена единичная матрица размеров $n \times n$, $\frac{\partial f^{(l)}(t, \mathbf{y})}{\partial \mathbf{y}}$ – матрица Якоби, или *метод Эйлера*:

 $\mathbf{y}_{k+1} = \mathbf{y}_k + f^{(l)}(t_k, \mathbf{y}_k)h.$

Метод (5) является А-устойчивым и имеет второй порядок сходимости для автономных систем ОДУ [14]. Метод Эйлера (6) имеет первый порядок сходимости для произвольных систем ОДУ.

Условная оптимизация статистического алгоритма, для более общего случая систем с распределенными переходами, была проведена в работе [9]. В частности, было доказано, что если численный метод решения имеет p-й порядок сходимости, то при вычислении функционалов от решения условно оптимальным является число испытаний, вычисленное по формуле $N = O(h^{-2p})$, и погрешность вычисления функционалов имеет порядок $O(N^{-1/2})$, где N – объем выборки, h – шаг интегрирования. А при вычислении гистограммы условно оптимальным является по формуле $N = O(h^{-3p})$ при $n_g = O(N^{1/3})$, где n_g – число шагов при построении гистограммы. Погрешность вычисления гистограммы в норме пространства $L_2(R)$ имеет порядок $O(N^{-1/3})$. Также в [9] приведены соотношения для вычисления вероятностных характеристик выходных процессов (моментов первого и второго порядков, гистограммы маргинальных плотностей вероятности).

Спектральный метод анализа систем управления ансамблем траекторий

Искомые ненормированные плотности распределения $p^{*(l)}(t, \mathbf{y})$ вектора состояния системы (1), (2) удовлетворяют системе уравнений (4). Опишем спектральный метод [8, 10] решения этих уравнений.

Пусть $\{e_{i_0i_1...i_n}(t, \mathbf{y})\}_{i_0,i_1,...,i_n=0}^{\infty}$ – ортонормированный базис пространства $L_2([t_0,T] \times \mathbb{R}^n)$, причем функции $e_{i_0i_1...i_n}(t, \mathbf{y})$ порождаются всевозможными произведениями функций, образующих ортонормированные базисы $\{q_{i_0}(t)\}_{i_0=0}^{\infty}$ и $\{\chi_{i_1...i_n}(\mathbf{y})\}_{i_1,...,i_n=0}^{\infty}$ пространств $L_2([t_0,T])$ и $L_2(\mathbb{R}^n)$ соответственно, т.е. $e_{i_0i_1...i_n}(t, \mathbf{y}) = q_{i_0}(t)\chi_{i_1...i_n}(\mathbf{y})$; $i_0, i_1, ..., i_n = 0, 1, 2, ...$

Спектральной характеристикой функции $z(t, \mathbf{y})$ называется (n+1)-мерная бесконечная матрица Z(n+1,0) (см. [8, 10]), элементы которой представляют собой коэффициенты разложения этой функции в ряд по функциям базисной системы $\{e_{i_0i_1...i_n}(t, \mathbf{y})\}_{i_0,i_1,...,i_n=0}^{\infty}$, т.е.

$$z_{i_0 i_1 \dots i_n} = \int_{t_0}^T \int_{R^n} e_{i_0 i_1 \dots i_n}(t, \mathbf{y}) z(t, \mathbf{y}) d\mathbf{y} dt , \quad i_0, i_1, \dots, i_n = 0, 1, 2, \dots$$
(7)

Аналогично, *спектральной характеристикой функции z*(**y**) называется *n*-мерная бесконечная матрица *Z*(*n*,0) с элементами

$$z_{i_1...i_n} = \int_{R^n} \chi_{i_1...i_n}(\mathbf{y}) z(\mathbf{y}) d\mathbf{y}, \quad i_1,...,i_n = 0,1,2,...$$
(8)

Спектральной характеристикой линейного оператора A, определенного на пространстве функций аргументов t и **у**, называется 2(n+1)-мерная бесконечная матрица A(n+1,n+1), элементы которой определяются соотношением

$$a_{i_0i_1\dots i_n j_0j_1\dots j_n} = \int_{t_0}^{T} \int_{R^n} e_{i_0i_1\dots i_n}(t, \mathbf{y}) A e_{j_0j_1\dots j_n}(t, \mathbf{y}) d\mathbf{y} dt, \quad i_0, i_1, \dots, i_n, j_0, j_1, \dots, j_n = 0, 1, 2, \dots$$
(9)

Обозначим через $\Phi^{*(l)}(n+1,0)$ и $\Phi_0^{*(l)}(n,0)$ спектральные характеристики функций $p^{*(l)}(t,\mathbf{y})$ и $p_0^{*(l)}(\mathbf{y})$ соответственно, l=1,2,...,S. Кроме того, пусть P(n+1,n+1) и $P_i(n+1,n+1)$ – спектральные характеристики операторов дифференцирования $\frac{\partial}{\partial t}$ и $\frac{\partial}{\partial y_i}$, а $F_i^{(l)}(n+1,n+1)$ и $V_{lr}(n+1,n+1)$ – спектральные характеристики операторов умножения на функции $f_i^{(l)}(t,\mathbf{y})$ и $v_{lr}(t,\mathbf{y})$ соответственно; i, j=1,2,...,n; l, r=1,2,...,S; $l \neq r;$ $q(1,0;t_0)$ – матрица-столбец значений функций базисной системы $\{q_{l_0}(t)\}_{l_0=0}^{\infty}$ при $t = t_0$.

Как показано в [10], в предположении существования обобщенного решения системы уравнений (4) спектральные характеристики $\Phi^{*(l)}(n+1,0)$ удовлетворяют системе уравнений, которые являются частным случаем уравнений *обобщенных характеристических функций* [9, 10]:

$$P(n+1,n+1) \cdot \Phi^{*(l)}(n+1,0) - q(1,0;t_0) \otimes \Phi^{*(l)}_0(n,0) =$$

$$= -\sum_{i=1}^n P_i(n+1,n+1) \cdot F_i^{(l)}(n+1,n+1) \cdot \Phi^{*(l)}(n+1,0) -$$

$$-V_{ll}(n+1,n+1) \cdot \Phi^{*(l)}(n+1,0) + \sum_{r=1 \neq l}^S V_{rl}(n+1,n+1) \cdot \Phi^{*(r)}(n+1,0),$$
(10)

где $P(n+1,n+1) = P(n+1,n+1) + (q(1,0;t_0)\cdot[q(1,0;t_0)]^T) \otimes E(n,n)$, E(n,n) - 2n-мерная единичная матрица, \otimes – знак тензорного умножения многомерных матриц,

$$V_{ll}(n+1, n+1) = \sum_{r=1 \neq l}^{S} V_{lr}(n+1, n+1), \quad l = 1, 2, ..., S.$$

Уравнения вида (10) образуют систему линейных неоднородных алгебраических уравнений, неизвестными в которых являются элементы $\phi_{i_0i_1...i_n}^{*(l)}$ матриц $\Phi^{*(l)}(n+1,0)$, т.е. ко-

эффициенты разложения искомых ненормированных плотностей распределения $p^{*(l)}(t, \mathbf{y})$ в ряд по функциям базисной системы $\{e_{i_0i_1...i_n}(t, \mathbf{y})\}_{i_0,i_1,...,i_n=0}^{\infty}$. Таким образом, после решения (10) ненормированные плотности распределения вектора состояния могут быть представлены в виде

$$p^{*(l)}(t,\mathbf{y}) = \sum_{i_0,i_1,...,i_n=0}^{\infty} \phi^{*(l)}_{i_0i_1...i_n} e_{i_0i_1...i_n}(t,\mathbf{y}), \quad (t,\mathbf{y}) \in [t_0,T] \times \mathbb{R}^n, \quad l = 1, 2, ..., S.$$

При практических расчетах для нахождения приближенного решения задачи анализа все спектральные характеристики усекаются, тогда функции $p^{*(l)}(t, \mathbf{y})$ представляются следующим образом:

$$p^{*(l)}(t,\mathbf{y}) = \sum_{i_0=0}^{L_0-1} \sum_{i_1=0}^{L_1-1} \dots \sum_{i_n=0}^{L_n-1} \phi_{i_0i_1\dots i_n}^{*(l)} e_{i_0i_1\dots i_n}(t,\mathbf{y}),$$

при этом в выражениях (7)–(9) достаточно положить $i_0 = 0, 1, ..., L_0 - 1, ..., i_n = 0, 1, ..., L_n - 1$ (величины $L_0, ..., L_n$ называются *порядками усечения спектральных характеристик*), т.е. (10) будет представлять собой систему $L \cdot S$ линейных алгебраических уравнений с $L \cdot S$ неизвестными, где $L = L_0 \cdots L_n$, решение которой может быть получено известными методами.

По найденным спектральным характеристикам $\Phi^{*(l)}(n+1,0)$ могут быть определены вероятности $P^{(l)}(t)$, маргинальные плотности вероятности и моментные характеристики вектора состояния с использованием свойств *спектральных характеристик линейных функционалов* [10], при этом для определения маргинальных плотностей вероятности спектральным методом требуется, чтобы функции базисной системы $\{\chi_{i_1...i_n}(\mathbf{y})\}_{i_1,...,i_n=0}^{\infty}$ порождались всевозможными произведениями функций базисных систем $\{\chi_{i_1}^1(y_1)\}_{i_1=0}^{\infty}, ..., \{\chi_{i_n}^n(y_n)\}_{i_n=0}^{\infty}$ пространства $L_2(R)$, т.е. $\chi_{i_1...i_n}(\mathbf{y}) = \chi_{i_1}^1(y_1)...\chi_{i_n}^n(y_n)$; $i_1,...,i_n = 0,1,2,...$

В качестве базисной системы $\{q_{i_0}(t)\}_{i_0=0}^{\infty}$ можно использовать, например, полиномы Лежандра, косинусоиды, функции Уолша и Хаара, а в качестве базисных систем $\{\chi_{i_1}^1(y_1)\}_{i_1=0}^{\infty}$, ..., $\{\chi_{i_n}^n(y_n)\}_{i_n=0}^{\infty}$ – функции Эрмита.

Алгоритмы нахождения вероятностей $P^{(l)}(t)$, маргинальных плотностей вероятности и моментных характеристик вектора состояния спектральным методом по известным спектральным характеристикам ненормированных плотностей распределения вектора состояния, а также алгоритмы вычисления спектральных характеристик операторов дифференцирования и умножения относительно различных базисных систем приведены в [10].

Расчет задачи анализа системы стабилизации

Возмущенное движение спутника, находящегося под действием гравитационного и управляющего моментов, в плоскости орбиты описывается следующими уравнениями:

$$\frac{d\theta(\tau)}{d\tau} = q(\tau), \quad \frac{dq(\tau)}{d\tau} = -3\Omega^2\beta\sin\theta(\tau)\cos\theta(\tau) + L\upsilon(\tau),$$

где θ – угол отклонения оси спутника по отношению к радиус-вектору центра масс, q – угловая скорость вращения вокруг центра масс, Ω – угловая скорость обращения спутника по круговой орбите, L и β – константы, зависящие от конструкции спутника, υ – управление [15].

В [2] показано, что при малых колебаниях спутника с учетом возможного отказа управляющего устройства его движение приближенно описывается уравнениями

$$\frac{dy_1(t)}{dt} = y_2(t), \quad \frac{dy_2(t)}{dt} = -y_1(t) + (2-k)u(t), \quad k = 1, 2,$$

где $\tau = \alpha t$, $\theta = \gamma y_1$ и $q = \delta y_2$, а числа α , γ и δ выбраны таким образом, что

$$\frac{\alpha\delta}{\gamma} = 1, \quad \frac{3\Omega^2\beta\alpha\gamma}{\delta} = 1, \quad \frac{\alpha L}{\delta} = 1, \quad t \in [0,1].$$

Случай k = 1 соответствует режиму нормального функционирования, а случай k = 2 – режиму отказа, т.е. срыву стабилизации.

Будем предполагать, что начальные условия $y_{10} = y_1(0)$ и $y_{20} = y_2(0)$ принадлежат некоторому ограниченному множеству $\Omega \subset R^2$, характеризующему неопределенность задания начальных данных, и описываются заданной плотностью распределения $p_0(y_1, y_2)$. При отсутствии априорной информации о законе распределения величин y_{10} и y_{20} можно положить

$$p_0(y_1, y_2) = \begin{cases} \frac{1}{\max \Omega}, & (y_1, y_2) \in \Omega, \\ 0, & (y_1, y_2) \notin \Omega. \end{cases}$$

В случайные моменты времени возможен отказ управляющего устройства с последующим восстановлением режима нормального функционирования. Интенсивности отказа и восстановления в общем случае зависят от времени и задаются функциями $\lambda_{12}(t)$ и $\lambda_{21}(t)$ соответственно [4]. В начальный момент времени система функционирует нормально с вероятностью $P_0^{(1)} < 1$. Таким образом, параметр *k* принимает значения дискретного случайного процесса *s*(*t*) с двумя состояниями.

Задача анализа системы стабилизации заключается в нахождении ненормированных плотностей распределения $p^{*(1)}(t, y_1, y_2)$ и $p^{*(2)}(t, y_1, y_2)$ вектора состояния $\mathbf{y} = [y_1 \ y_2]^T$ по заданным характеристикам: начальной плотности $p_0(y_1, y_2)$, вероятности $P_0^{(1)}$ нормального функционирования системы в начальный момент времени, интенсивностям $\lambda_{12}(t)$ и $\lambda_{21}(t)$.

Ненормированные плотности распределения удовлетворяют следующей системе обобщенных уравнений Фоккера-Планка-Колмогорова (4):

$$\begin{split} \frac{\partial p^{*(1)}(t, y_1, y_2)}{\partial t} &= -y_2 \frac{\partial p^{*(1)}(t, y_1, y_2)}{\partial y_1} - \frac{\partial ((-y_1 + u(t)) p^{*(1)}(t, y_1, y_2))}{\partial y_2} - \\ &-\lambda_{12}(t) p^{*(1)}(t, y_1, y_2) + \lambda_{21}(t) p^{*(2)}(t, y_1, y_2), \\ \frac{\partial p^{*(2)}(t, y_1, y_2)}{\partial t} &= -y_2 \frac{\partial p^{*(2)}(t, y_1, y_2)}{\partial y_1} + y_1 \frac{\partial p^{*(2)}(t, y_1, y_2)}{\partial y_2} - \\ &-\lambda_{21}(t) p^{*(2)}(t, y_1, y_2) + \lambda_{12}(t) p^{*(1)}(t, y_1, y_2), \\ p^{(1)}(0, y_1, y_2) &= P_0^{(1)} p_0(y_1, y_2), \quad p^{(2)}(0, y_1, y_2) = (1 - P_0^{(1)}) p_0(y_1, y_2). \end{split}$$

В качестве конкретного численного примера рассмотрим задачу нахождения вероятностей $P^{(k)}(t)$ работы системы в режимах нормального функционирования и срыва стабилизации, маргинальных плотностей вероятности $p_i(t, y_i)$, математических ожиданий $m_i(t)$ и вторых начальных моментов $\Psi_i(t)$ координат вектора состояния:

$$P^{(l)}(t) = \int_{R^2} p^{*(l)}(t, y_1, y_2) dy_1 dy_2, \quad k = 1, 2;$$

$$p_1(t, y_1) = \int_{-\infty}^{+\infty} p(t, y_1, y_2) dy_2, \quad p_2(t, y_2) = \int_{-\infty}^{+\infty} p(t, y_1, y_2) dy_1;$$

$$m_i(t) = \int_{-\infty}^{+\infty} y_i p_i(t, y_i) dy_i, \quad \Psi_i(t) = \int_{-\infty}^{+\infty} y_i^2 p_i(t, y_i) dy_i, \quad i = 1, 2,$$

где $p(t, y_1, y_2) = p^{*(1)}(t, y_1, y_2) + p^{*(2)}(t, y_1, y_2)$ – плотность вероятности вектора состояния. Пусть y_{10} и y_{20} являются независимыми случайными величинами, имеющими усеченное нормальное распределение с параметрами $m_{10} = -0.3$, $D_{10} = 1$ и $m_{20} = 0.1$, $D_{20} = 1$ соответственно, т.е.

$$p_0(y_1, y_2) = \begin{cases} \frac{1}{2\pi\gamma} \exp\left(-\frac{(y_1 + 0.3)^2 + (y_2 - 0.1)^2}{2}\right), & (y_1, y_2) \in \Omega, \\ 0, & (y_1, y_2) \notin \Omega, \end{cases}$$

где

$$\gamma = \int_{\Omega} \frac{1}{2\pi} \exp\left(-\frac{(y_1 + 0.3)^2 + (y_2 - 0.1)^2}{2}\right) dy_1 dy_2, \quad \Omega = [-4, 4] \times [-4, 4].$$

Управляющее воздействие задано соотношением

 $u(t) = -0.2(1 - tg^{2} - 1)\cos t - 0.2(3 + 3tg^{2} + 2tg^{2} - 1)\sin t.$

Оно в среднем обеспечивает минимальный расход энергии, а также стабилизацию спутника в момент времени t = 1, т.е. математические ожидания величин $y_1(1)$ и $y_2(1)$ должны быть малы. Интенсивности отказа и восстановления заданы функциями $\lambda_{12}(t) = 0.2$ и $\lambda_{21}(t) = 0.1$, соответственно. В начальный момент времени система функционирует нормально с вероятностью $P_0^{(1)} = 0.95$.

Воспользуемся приведенными выше алгоритмами приближенного решения задачи анализа систем управления ансамблем траекторий.

При решении задачи методом статистического моделирования использовался обобщенный одностадийный метод типа Розенброка [14] с шагом h = 0.01; число моделируемых траекторий $N = 10^6$; для построения гистограммы отрезок [-4,4] изменения координат вектора состояния равномерно разбивался на 100 частей. Оценки функционалов от решения и гистограммы вычислялись одновременно.

Погрешность вычисления функционалов от решения составляет O(h) = O(0.01) (для получения такой точности достаточно было брать $N = 10^4$).

Выбранные параметры задачи ($N = 10^6$, $h = 10^{-2}$, $n_g = 100$) являются оптимальными параметрами для получения наилучшей оценки гистограммы при выбранном шаге $h = 10^{-2}$ и гарантируют погрешность вычисления гистограммы в норме пространства $L_2(R)$ порядка O(0.01). Дальнейшее уменьшение шага гистограммы или шага численного метода точность вычисления гистограммы не увеличивает. Дополнительные расчеты проводились при $h = 10^{-2}$ и $n_g = 500$, а также при $h = 10^{-3}$ и $n_g = 500$. Погрешность гистограммы не уменьшается, хотя время вычислений увеличилось (при $h = 10^{-3}$ в 10 раз). При получении искомых характеристик спектральным методом в качестве базисной системы для представления функций времени были выбраны полиномы Лежандра (порядок усечения $L_0 = 8$), а в качестве базисных систем для представления функций координат вектора состояния – функции Эрмита (порядки усечения $L_1 = L_2 = 12$) [8, 10, 16]. Дальнейшее небольшое увеличение порядков усечения спектральных характеристик ($L_1 = L_2 = 16$) практически не отражается на точности решения.

Результаты расчетов представлены на рис. 1–3 (тонкой линией показаны характеристики, полученные методом статистического моделирования, а толстой – характеристики, полученные спектральным методом).

Графики демонстрируют практически полное совпадение численных решений для маргинальных плотностей вероятности и математических ожиданий координат вектора состояния и небольшие расхождения для вторых начальных моментов, полученных обоими методами. Эти расхождения обусловлены тем, что искомые ненормированные плотности распределения аппроксимируются функциями, представляющими собой произведение плотности нормального распределения по y_1 , y_2 и полинома переменных t, y_1 , y_2 , максимальный порядок которого определяется усечениями спектральных характеристик, при этом неизбежны колебания плотности вблизи нуля, а равенство в соотношении (3) (в условии нормировки) оказывается лишь приближенным. Это в первую очередь отражается на точности вычисления моментов вектора состояния (особенно моментов высокого порядка) при небольших порядках усечения спектральных характеристик.

Рис. 2. Вероятности режимов работы системы стабилизации

Заключение

Из проведенных численных экспериментов видно, что при сопоставимом времени счета оба метода обеспечивают достаточную для приложений точность анализа систем управления ансамблем траекторий с учетом случайного изменения структуры. Точность оценок, полученных методом статистического моделирования, зависит от шага интегрирования

h и числа моделируемых траекторий N. Точность оценок, полученных спектральным методом, зависит от выбора базисных систем и порядков усечения $L_0, ..., L_n$.

Погрешность метода статистического моделирования можно оценить, не пользуясь точным решением. Поэтому погрешность спектрального метода можно контролировать с помощью метода статистического моделирования.

Библиографический список

- Матросов В.М., Веретенников В.Г. О научно-образовательной программе разработки университетских пико-спутников Земли; о их стабилизации и устойчивости при возмущениях // Авиация и космонавтика – 2004. Ш Межд. конф., Москва. 2004: Тез. докл. – М.: МАИ, 2004. – С. 3.
- Рыбаков К.А., Сотскова И.Л., Юдин М.А. Синтез алгоритмов оптимального управления малым искусственным спутником с учетом возможного отказа управляющего устройства // Теоретические вопросы вычислительной техники и программного обеспечения: Межвуз. сб. науч. тр. М.: МИРЭА, 2006. С. 98–103.
- Khrustalev M.M., Rumyantsev D.S. Synthesis of optimal control strategy by damping a vibration of Earth flexible satellite with a gravity-gradient stabilization with information constraints // Report on 58-th International Astronautical Congress. Hyderabad, 2007.
- Казаков И.Е., Артемьев В.М., Бухалев В.А. Анализ систем случайной структуры. М.: Физматлит, 1993.
- 5. Пантелеев А.В., Руденко Е.А., Бортаковский А.С. Нелинейные системы управления: описание, анализ и синтез. М.: Вузовская книга, 2008.
- 6. Аверина Т.А. Статистический алгоритм моделирования динамических систем с переменной структурой // Сиб. журн. вычисл. математики. – 2002, т. 5, № 1. – С. 1–10.
- Averina T.A. Algorithm for statistical simulation of two types of random-structure systems // Russ. J. Numer. Anal. Math. Modelling. – 2001, vol. 16, no 6. – P. 467–482.
- 8. Пантелеев А.В., Рыбаков К.А. Прикладной вероятностный анализ нелинейных систем управления спектральным методом. – М.: Изд-во МАИ-ПРИНТ, 2010.
- Averina T.A., Rybakov K.A. Comparison of a statistical simulation method and a spectral method for analysis of stochastic multistructure systems with distributed transitions // Russ. J. Numer. Anal. Math. Modelling. 2007, vol. 22, no 5. P. 431–448.
- 10. Пантелеев А.В., Рыбаков К.А., Сотскова И.Л. Спектральный метод анализа нелинейных стохастических систем управления. – М.: Вузовская книга, 2006.

- 11. Averina T.A. Algorithm of statistical simulation of dynamic systems with distributed change of structure // Monte Carlo Methods and Appl. 2004, vol. 10, no 3–4. P. 221–226.
- Аверина Т.А. Статистическое моделирование динамических систем с разделением времени с автономным управлением // Вестник НГУ, Серия: матем., механика, информ. – 2004, т. 4, № 2. – С. 3–23.
- 13. Ермаков С.М., Михайлов Г.А. Статистическое моделирование. М.: Наука, 1982.
- 14. Artemiev S.S., Averina T.A. Numerical Analysis Systems of Ordinary and Stochastic Differential Equations. Utrecht: VSP, 1997.
- 15. Гурман В.И. Вырожденные задачи оптимального управления. М.: Наука, 1977.
- 16. Романов В.А., Рыбаков К.А. Спектральные характеристики операторов умножения, дифференцирования и интегрирования в базисе обобщенных функций Эрмита // Электронный журнал «Труды МАИ». – 2010, № 39. – http://www.mai.ru (16.08.10).

Сведения об авторах

Аверина Татьяна Александровна; доцент Новосибирского государственного университета; старший научный сотрудник ИВМ и МГ СО РАН; к.ф.-м.н.

e-mail: <u>ata@osmf.sscc.ru</u>

Рыбаков Константин Александрович; доцент Московского авиационного института (государственного технического университета); к.ф.-м.н.

e-mail: <u>rkoffice@mail.ru</u>