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ABSTRACT

In this paper we consider the stochastic systems with jumps (random impulses) generated by Erlang flow of events that
lead to discontinuities in paths. These systems may be used in various applications such as a control of complex techni-
cal systems, financial mathematics, mathematical biology and medicine. We propose to use a spectral method formal-
ism to the probabilistic analysis problem for the stochastic systems with jumps. This method allows to get a solution of

the analysis problem in an explicit form.
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1. Introduction

In this paper we consider the stochastic systems with
jumps generated by Erlang flow of events that lead to
discontinuities of sample paths. These systems are called
the jump-diffusion systems or the stochastic systems with
random quantization period. Jumps may have different
characteristics that describe intervals between them and
their amplitudes [1,2].

Stochastic systems with jumps are used in various ap-
plications such as complex technical systems (control of
moving objects, jam-resistant radars, radioisotope measu-
ring systems, electrical circuits with impulse sources),
financial mathematics (description of stock price move-
ments and valuation of stock options), mathematical bio-
logy and medicine (biomass control and drug delivery
model) [2,3].

The goal of this paper is to develop the spectral
method [4-6] for a problem of the probabilistic analysis
for jump-diffusion systems. The spectral method formali-
sm has been used previously to the stochastic systems
with jumps generated by Poisson flow of events. Here we
consider more complex problem which assumes that we
have Erlang flow of jumps. This allows to investigate the
stochastic systems with jumps in sample paths at the
random time moments. Intervals between these moments
can be described by not only the exponential distribution,
but Erlang distribution [7].
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2. Problem Statement

We assume that the system behavior is described by a
jump-diffusion process. This process can be represented
as a solution of the stochastic differential equation [1]:

dX (t) = f(t, X (t))dt+o(t, X (t))dW (t)+dQ(t),

X (t) =X, @

where X eR" isastatevector, teT, T =[t,t];
f(t,x):TxR" >R"o(t,x):TxR" > R™, W(t) is
an s-dimensional standard Wiener process independent
of X,.

The component dQ(t) describes “extreme events”
attended by jumps in sample paths of the process X (t)
(e.g., a technical failure or a stock market crash). We
assume that

Here J(t) isthe N -th order Erlang process (Erlang
process J(t) is a “censored” Poisson process in which
N —1 consecutive points are removed from a Poisson
process P(t) with the transition intensity A(t) and
then one ooint left unchanaed [7]). Y(z.) are inde-
pendent random variables from R" whose distribution
is given by the probability density function w(t,y), i.e.,
state vector gets random increment at time moments
7,,7,, -+ associated with Erlang flow of events [1]:

X(ri)z X(z’i —O)+Y(ri).
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The process Q(t) may be represented as

Qt)=2&Y (),

where the value & is used to “censor” N -1 Poisson

flow events in succession and to select each event which

is a multiple of N (&, is the periodic function: &, =& ):
{1, i(modN)=0,

" |0,i(mod N) = 0;
time moments 6,,6,,---conform to the events in Poisson
flow: &, =7;.

Introduce a stochastic process K(t) with a finite
state set {1,2,---, N} . These states are replaced sequen-
tially starting from 1 with the transition intensity A(t):

K(t)=1+P(t)(modN).

when the state with number N passes into the state
with number 1, the state vector X gets a random in-
crement which leads to a jump in sample paths of the
process X(t) (see Figure 1).

The introduction of the process K(t) allows to rep-
resent the probability density function ¢(t,x) of the
state vector X as follows:

N

o(tx) =Y 0" (tx),

k=1

where functions (p(")(t,x) satisfy generalized Fok-
ker-Planck equations [2,5,8]:

®
M:A¢(l) (t,x)—/l(t)go(l) (t,x)
ot )
+/1(t)_[z//(t,x—z)go(N)(t,z)dz,
RI’I
o . R ,
P(t) 1 2 3N-1 ;’NH N+2 2N-1 27\/ 37v t'

A
Ko

Figure 1. Sample paths of processes K(t) and X(t).
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G;; (t,x)= go} (t.X)O'J-r (t,x)i,j=12,,n.

The initial state X, is determined by a given prob-
ability density function ¢, (x). The initial state of the
process K (t) isfixed: K(t,)=1.So,

" (t, %)= 0, (x), 0™ (t,x) =0,k =2,---,N.  (5)

The last term on the right side of Equation (2) can be
written in the operator form:

Ho(t,x)=A(t) [ w(t.x—2)p(t,2)dz (6)
a0
for all admissible functions ¢(t,x); M is a linear op-
erator which is a composition of the multiplication op-
erator and the Fredholm operator with kernel
w(t,x—-2).

The analysis problem of the stochastic systems with
jumps described by Equation (1) is to find the probability
density function ¢(t,x) of the state vector X .

We assume that the unique solutions of Equation (1)
and Equations (2)-(5) exist for given functions f (t,x),
a(t,x),/i(t),y/(t, y),and ¢,(x).

3. Proposed Method: Overview of Spectral

Method Formalism

Reduce the analysis problem to the finding of Fourier
coefficients ¢, , for the function ¢(t,x). Let

{q(io,t)}::0 be an orthonormal basis of L,(T) and let

{ p(il""’in ! X)}:A.A,in:

L, (R"), then {e(ig,iy, i, t.X)}"

ig i ,ein =

normal basis of L, (T x R”),where
e(ig. i, t,X) = q(ig, t)- p(iy, -1y, X),
iy, iy, i, =0,1,2,---. So,

o be an orthonormal basis of

is the ortho-
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i, iy, 0y, 1, X) @(t, ) dtdlx,

1 iny

(ploll “in J.
TxR"

iy, iy, 0, =0,1,2, -

We apply the spectral method formalism [5,8] to Equa-
tion (2) and Equation (3) subject to the conditions (5),
therefore

P(n+1n+1)-
=A(n+1,n+1)-
—A(n+1,n+1)~d>(
+H(n+Ln+1)- o

@ (n+1,0)-q(L,0;t,) ® D, (n,0)
¥ (n+1,0)

l)(n+1,0)

'(n+1,0),

@)

P(n+Ln+1)-0“ (n+1,0)
=A(n+1n+1)-0% (n+1,0)
~A(n+1,n+1)-0% (n+1,0) )
+A(n+1,n+1)-0* Y (n+1,0),
k=2,---,N.
In these equations P(n+1,n+1) is the spectral cha-
racteristic of the differential operator /ot subject to a
function value at the initial time moment t; A(n+1,n+1)

and H(n+1n+1) are the spectral characteristics of
operators A and H defined by (4)

and (6), respectively, i.e., P(n+1n+1)= [P.

iy +in Joj1** Jn :| !

A(n+Ln+2)=[ Ay i, |

and

H(n+1n+1)=[H

il ++in doJ1-* in :|
are 2(n-+1)-dimensional matrices [9] (see Appendix)
with elements

ioh~inJo Ju++ in

= j e(ig iy, iy, t,X)

TxR"

+q(i0,to)-Q(j01to)'{l,il: ey = J}

0, otherwise

2e(Jo» v+ st X)

dtdx

Aoil"'in Jodiin

= [ e(igiy iyt X) A8 oo ooy oot X)dltdx,
TxR"
ioh+inJo 1+ In

= [ e(igis i t.X)He(Jo, Jioev, Jnot X) dtdx,
TxR"

iyby iy Joo diveeey dn = 0,1,2,004;

A(n+1,n+1) is the spectral characteristic of the mul-
tiplication operator with multiplier A(t):

Copyright © 2013 SciRes.

A(n+1Ln+1)
= L Moiy-+in o i jn:| Aioil--zinjojlmjn
= [t ey tx)e (o Jiaees Jn t X) ditdx
TxR"
Li,=j,i =]
= l ,t)dt- 17 a n nl
'[ a(t) {0,0therwise }

IO’Il"”’ n? JO' Jl'”'l jn =011121”';

o' )((n +1,0) are the spectral characteristics of func-
tions ¢ ( x),k=1,2,---,N . All these spectral charac-
teristics are defined reIatlve to

fe(ipri iy t, X)}.O sio Further, the q(1,0;ty) is

the column matrix with values of functions {q(io,t)}i0
at the initial time moment t, : ’

)=[q(0,t0) q(l’to) q(2,t0) "'T;

®,(n,0) is the spectral characteristic for the prob-
ability density function ¢, (x) of the initial state X, .

a(1,0;t,

It is defined relative to {p(i.-i,.x)}" e,

i =0
@, (n,0)= |:§00;i1~-in ]

Poipii = jﬂ P (i, 1y X) @ (X) dX,
iy, =R0,1,2,...

The spectral characteristic ®(n+1,0) of the prob-
ability density function ¢(t,x), also called a generali-
zed characteristic function [5,6], may be expressed as
follows (®(n+1,0) is the (n+1) -multidimensional
matrix formed by Fourier coefficients ¢,; ; ):

N
®(n+1,0)=> @" (n+1,0),
k=1

@(n +l,0)=[¢i0i1,,4i ] ©)
o™ (n+1,0)= [go,o,l) i J

The properties of the spectral characteristics for func-
tions and linear operators in Equations (7)-(9) are de-
scribed in [5,8].

As a rule [5,6], the spectral characteristic A(n+1,n+1)
is expressed in terms of the spectral characteristics for
differential operators and multiplication operators:

A(n+1,n+1)

=_Zn:7>i(n +1n+1)-F (n+1n+1)
i=1
3 ip (n+1,n+1)-G; (n+1Ln+1),

+- i
234

where B(n+1,n+1) and 7 (n+1n+1) are the spec-
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tral characteristics of first-order and second-order differ-
ential operators §/dx, and az/axiaxj , respectively;
F(n+Ln+1) and G;(n+Ln+1) are the spectral
characteristics of multiplication operators with multipli-
ers f(t,x) and g;(t,x), respectively. These spectral
characteristics are defined like a A(n+1n+1) relative

’In’t X)}IO i, =0

Such definition of A(n+1,n+1) is more preferred
since there are analytical expressions of the spectral
characteristics relative to various orthonormal functions
for differential operators and multiplication operators
(see [4,5]).

Equation (7) and Equation (8) are linear matrix equa-
tions for the spectral characteristics ®") (n+1,0) or li-

near algebraic equations for Fourier coefficients ¢*)

ol +~+in

to the orthonormal basis {e(io,il, .

(for functions o™ (t,x)). Let us consider the solution of
these equations.
It follows from Equation (8) that

(P(n+Ln+1)-A(n+Ln+1)+A(n+1Ln+1))
x®" (n+1,0) (10)
=A(n+1,n+1)-0% Y (n+1,0),
i.e.,
" (n+1,0)
=A"(n+Ln+1)
x(P(n+Ln+1)- A(n+Ln+1)+A(n+1Ln+1))
x®" (n+1,0)
or
®*Y(n+1,0)=W (n+1n+1)-0" (n+1,0),
where
W (n+1n+1)
=A?(n+1Ln+1)
x(P(n+Ln+1)- A(n+Ln+1)+A(n+1n+1))
=A™ (n+1Ln+1)
x(P(n+Ln+1)-A(n+Ln+1))+E(n+Ln+1).
Thus,
o (n+1,0)=W**(n+1n+1)-®" (n+1,0),
@™ (n+1,0)=W"*(n+1,n+1)- "™ (n+1,0),
in particular
oY (n+2,0)=W"*(n+1,n+1)- @™ (n+10). (11)

We rewrite Equation (7) subject to Equation (11):
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(P(n+Ln+1)- A(n+Ln+1)+A(n+1Ln+1))
xWN(n+1,n+1)-0™ (n+1,0)
~H(n+1n+1)-0™ (n+1,0)

=q(L0;t,) ® D, (n,0)
or
(A(n+Ln+1)-W" (n+Ln+1)—H (n+1Ln+1))
x®™ (n+1,0)
=0q(10;t,)®®,(n,0),
therefore
®™ (n+1,0)
= (A(n+Ln+1)-W" (n+Ln+1)~H(n+Ln+1))"
x(q(L0;t,)® D, (n,0)).
We express the spectral characteristic ®(n+1,0)

subject to Equation (9):
®(n+1,0)
=§jw“k(n+1,n+1)-q><m

=)

=(WN‘1(n+l,n+l)+~~-+W2(n+1,n+1)

(n+1,0)

+W (n+1,n+1)+E(n +1,n+1))
x dN (n +1, 0)

where E(n+1n+1) is the 2(n+1)-dimensional iden-
tity matrix. The expression in parentheses is multiplied on
the right by the difference E(n+1,n+1)-W (n+1n+1):

(WNl(n+1 N+1)+--+W2(n+1,n+1)

W (n+Ln+1)+E(n+1, n+1))

( ( W (n+1n+1))

=W "t (n+L,n+1)+---+W?(n+1,n+1)
+W (n+Ln+1)+E(n+1n+1)

—WM(n+Ln+1)—-—W?3(n+Ln+1)
-W?(n+Ln+1)-W(n+Ln+1)
=E(n+L,n+1)-W" (n+Ln+1),

n+Ln+1)-

WMt (n+L,n+1)+--+W?(n+1n+1)
+W (n+Ln+1)+E(n+1n+1)

:(E(n+1,n+1)—WN(n+1’n+1)) 12)

x(E(n+Ln+1)-W (n+Ln+1))".
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A similar result can be obtained by multiplying on the
leftby E(n+1Ln+1)-W (n+1n+1):

WMt (n+Ln+1)+-+W?(n+1Ln+1)
+W (n+1Ln+1)+E(n+1n+1)

=(E(n+Ln+1)-W (n+1n+1))"
x(E(n+Ln+1)-W" (n+Ln+1)).

(13)

Equation (12) and Equation (13), obviously, are ana-
logues of geometric series sum. Thus,

®(n+1,0)

=(E(n+Ln+1)-W" (n+1,n+1))
<(E(n+Ln+1)-W (n+1n+1))" (14)
x(A(n+Ln+1)-W" (n+1,n+1)

1

—H(n+Ln+1))" x(q(L0;t,) ®d, (n,0))
®(n+1,0)
=(E(n+Ln+1) W(n+1,n+1))’1

x(E(n+Ln+1)-W" (n+1,n+1)) (15)

x(A(n+Ln+1)-W" (n+1,n+1)
x(a(1,0;t,)®®, (n,0)),

are the problem solutions by the spectral method formal-
ism.

It is easy to see that if N =1 (order of Erlang process)
the problem reduces to the analysis of the stochastic sys-
tems with Poisson flow of jumps and

®(n+1,0)
=(P(n+Ln+1)-A(n+1n+1)

~H(n+Ln+1))"

+A(n+Ln+1)-H(n+Ln+1))"
x(q(L0;t, ) ® D, (n,0)).

when jump part is missed:
H(n+Ln+1)=A(n+1n+1),

we obtain the known solution of analysis problem for the
stochastic systems with continuous trajectories [5,6]:

®(n+1,0)
:(P(n +1Ln+1)-A(n +1,n+1))_1
x(q(l,o;to)®q)o (n,O))

It is required to apply the inversion formula for finding
the solution of the analysis problem [5]:

Copyright © 2013 SciRes.

S

(t)
Zii i(p.o.l PRI ('S ARSI IR 9§

lo

=0
(t,x)eTan,

=0 ih=0

but a finite number of coefficients Pigi i is usually de-
fined approximately since the problem of finding all
Fourier coefficients is not trivial. In this case, the infinite
matrices in Equations (7)-(9) are replaced by truncated
matrices. Then

L-1L-1 L,-1
o(tx)~

PIDINSDI Pigi-in ~
ip=0 =0 ih=0

where natural numbers L, L,---,L, are the selected

orders of the truncation for the spectral characteristics.

e(ig, iy, 0,1, %),

Remarks

1) The solution of the analysis problem is possmle to find
in another way To do this we express ®* (n +1,0) in
terms of (D (n +1,0) from Equation (10), then we
express @* (n +1,0) in terms of

()(n+1,0),k =2,---,N, that makes it possible to ex-
press ®" (n+1,0) from the Equation (7). The next step

is to develop the final formula for ®(n+1,0) subject to
Equation (9) and the similar transformations carried out
to express Equation (14) and Equation (15):

®(n+1,0)
=(z(n+Ln+1)-Z"*(n+1,n+1))

x(E(n+Ln+1)-Z(n+1Ln+1))

<(A(n+Ln+1)-H (n+Ln+1)-z" (n+1n+1))
x(9(L0;ty) @D, (n,0))

or

®(n+1,0)

=(E(n+Ln+1)-Z(n+Ln+1))"
x(Z(n+1,n+1)-Z""* (n+1,n+1))

H(n+Ln+1)-Z" (n+Ln+1)) "

(n,0)),

(2
x(A(n+Ln+1)-
x(q(L0;t,)
where
Z(n+1Ln+1)
=(P(n+Ln+1)-A(n+Ln+1)+ A(n+Ln+1))"
xA(n+1,n+1)
=W (n+1,n+1).
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These expressions are equivalent to Equation (14) and
Equation (15), but Equation (14) and Equation (15) are
preferable since finding the inverse spectral characteristic
A™(n+1,n+1) can be avoided in this case by defining
A7 (n+1,n+1) as the spectral characteristic of the mul-
tiplication operator with multiplier 1/4(t). In particular,
when the transition intensity is constant (A(t)=4) we
have

A (n+Ln+1) :%- E(n+Ln+1).

2) A generalization of the discussed problem is to con-
sider the transition intensity which depends on the state
vector. The jump size may be described by the condi-
tional probability density function v (t,x|z) that char-
acterizes the distribution of the state vector X (z;) after
the jump. This distribution depends on the previous
value X (7, —0) =z ; jumps in sample paths of the proc-
ess X (t) occurattime moment z;.

In this case Equation (2) and Equation (3) are repre-
sented as

ogp% (t,x)
ot
= Ap® (t,x) = A(t,x) " (t, x)

+J;/1(t, Z)l//(t,x|z)¢,(N) (t, Z)dZ,

29" (t.%)

ot
:Ago(k)(t,x)—l(tlx)(D(k) (t,x)+l(t,x)gp(kfl) (t,X),
k=2,---,N,

and the operator H (see Equation (6)) must be rede-
fined as

Ho(t,x)= _[/I(t,z)y/(t,x|z)¢)(t,z)dz.
an

Equation (7) and Equation (8) will not change (but
A(n+1,n+1) is the spectral characteristic of the multi-
plication operator with multiplier /l(t,x), the spectral
characteristic H (n +1,n+1) is calculated according to
a new definition of the operator 7). Therefore methods
for the problem solution will not change as well as Equa-
tion (14) and Equation (15).

4. Conclusions

We examine using of the spectral method formalism to
the probabilistic analysis problem for the stochastic sys-
tems with jumps generated by Erlang flow of events.
Finding of the probability density function for the state
vector by the spectral method formalism are developed.
Using of Erlang flow of events allows to consider a
more complex behavior for sample paths of the process

Copyright © 2013 SciRes.

X (t). The occurrence of jumps in sample paths can be
controlled by appropriate selection of parameters such as
the transition intensity A(t) and an order N (for Er-
lang process). This option makes it quite flexible tool for
modeling. Thus, for N =1 time intervals between
jumps are described by exponential distribution law, for
N >1 time intervals between jumps are described by
Erlang distribution, which is a special case of the gamma
distribution. Erlang distribution converges to the normal
distributionas N increases.

The application of the spectral method formalism al-
lows to reduce integro-differential equations to linear
algebraic equations for Fourier coefficients of the prob-
ability density function. It essentially simplifies the solu-
tion.
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Appendix
Multidimensional Matrix Operations

1) Let a,f€R and let A(p,q)z[ahmiphqu] and
B(p,q)=[b,..;,.,, | be the infinite (p-+g)-dimen-

sional matrices. The expression aA(p,q)+AB(p.q)

is the infinite (p+q -dimensional matrix
C(p’q):[ch---iph---iq if

Cil'“ipjl“'jq = aail"‘ipjl'“jq + ﬁbil'“ipjl“'jq ’

iy ds jg =012,

2) Let A(p,r):[ail__ipkl__kr}and _E(r’q) } be
| Pk g

the infinite (p+r) -dimensional and (r+q) -dimen-
sional matrices, respectively. The product
A(p,r)-B(r,q) is the infinite (p+q) -dimensional
matrix C(p,q):[c
if

-ip e o

0

CilA,Aipjlu.jq :k Zk

Gk =0

a'1“"pk1“'kr bk1‘“kr11‘“Jq <00,

iy s Jg = 04,2,

An infinite 2p -dimensional matrix E(p, p) is said
to be the identity matrix if

A(p.p)-E(p,p)=E(p.p)-A(p.P)=A(P. P)
for each 2p -dimensional matrix A(p, p). We use the

notation A" (p,p) to denote the product

A" (p,p)-A(P, P),
N=12-(A(p,p)=E(p,p)).
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3) Let A(p, p) be an infinite 2p -dimensional ma-
trix. An infinite 2p -dimensional matrix B(p,p) is
said to be the two-sided inverse of A(p, p) if

A(p.p)-B(p.p)=B(p.p)-A(p.p)=E(pP.p).

We use the notation A™(p,p) to denote the two-
sided inverse of A(p, p).
B(r,s)
4) Let A(p,q):[ail___iph___jq} and be
:[ kl--~k,I1~-IS:|

the infinite (p+q)-dimensional and (r+s)-dimen-
sional matrices, respectively. The tensor product
A(p,q)®B(r,s) is the infinite (p+r+q+s)-dimen-

sional matrix C(p+r,q+s):[cil___ipkl__krjl___qul___,sJ if

Cil‘“ipkl“‘krjl“‘jq|1“‘|s

iy f1-e g . bkl"‘krll“'ls ’

iy K K B ool g =0,1,2,0

5) Let A(p,q)=[ai1mipjlqu} be an infinite (p+q)
-dimensional matrix. An infinite (p+q)-dimensional
matrix B(q, p)=[b
of A(p,q) if

h,,‘th,,‘ip} is said to be the transpose

iy, e jg =042,

i1 igh-ip = ail“‘ipjl‘“jq vl
We use the notation [ A( p,q)]T to denote the trans-
pose of A(p,q).
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