УДК 681.3.06

Спектральные характеристики операторов умножения, дифференцирования и интегрирования в базисе обобщенных функций Эрмита

В.А. Романов, К.А. Рыбаков

Аннотация

В работе рассмотрены обобщенные функции Эрмита, получены рекуррентные соотношения для их производных и первообразных. Разработаны алгоритмы расчета спектральных характеристик операторов умножения, дифференцирования и интегрирования. Они апробированы на ряде примеров (примеры представления функций, их производных и первообразных, примеры анализа линейных детерминированных систем управления). Полученные алгоритмы могут быть полезными при решении задач анализа и синтеза систем управления сложными техническими объектами (например, летательными аппаратами) в спектральной форме математического описания.

Ключевые слова:

базис; полиномы Эрмита; функции Эрмита; спектральный метод; спектральная характеристика

Введение

Для представления функций рядами по ортогональным функциям на всем множестве действительных чисел широкое распространение получили полиномы и функции Эрмита [2, 5, 6, 16]. Функции Эрмита удобны для представления квадратично интегрируемых функций, т.е. таких функций f(x), что $\int_{-\infty}^{+\infty} f^2(x) dx < \infty$, хотя при некоторых допущениях, возможно представление функций, которые этому условию не удовлетворяют, допустимо представление и обобщенных функций [1]. В случае, когда $f(x) \rightarrow 0$ при $x \rightarrow \infty$, обычно применяются полиномы Эрмита. Существуют также базисные системы, порожденные вейвлетами, но их

использование осложнено отсутствием явных формул, задающих базисные функции, за редким исключением, например, системы функций, порожденных вейвлетом Хаара [13].

При анализе стохастических систем управления спектральным методом [6] более предпочтительным оказывается применение функций Эрмита, так как решение задачи вероятностного анализа заключается в нахождении плотности вероятности вектора состояния, т.е. интегрируемой (а часто и квадратично интегрируемой) функции на множестве действительных чисел. Для решения задачи синтеза оптимального управления стохастическими системами ситуация несколько иная [8]. Наряду с плотностью вероятности вектора состояния требуется найти и оптимальное управление – функцию $u^*(t,x)$, для которой условие $u^*(t,x) \rightarrow 0$ при $x \rightarrow \infty$ не выполняется (при отсутствии ограничений на значения координат вектора состояния), не говоря уже об условии квадратичной интегрируемости этой функции по переменной х. В этом случае используются полиномы Эрмита [10], но тогда плотность вероятности представляется полиномами и для нее, очевидно, не выполняются такие условия, как неотрицательность значений и условие нормировки. Другой проблемой при решении задачи синтеза оптимального управления является необходимость вычисления в ряде случаев спектральной характеристики оператора умножения на $\omega^{-1}(x)$, где $\omega(x)$ – весовая функция, относительно которой ортогональны функции базисной системы. В случае полиномов Эрмита явно вычислить эту характеристику не удается.

В связи со сказанным выше предлагается рассмотреть систему обобщенных функций Эрмита, которые удобны как для представления плотности вероятности, поскольку функции этой системы являются квадратично интегрируемыми на множестве действительных чисел, так и для представления оптимального управления, поскольку эти функции ортогональны с весовой функцией, аналогичной по структуре весовой функции полиномов Эрмита. Более того, полиномы Эрмита и функции Эрмита являются частным случаем рассматриваемых обобщенных функций Эрмита.

Эта работа важна в плане развития спектральной формы математического описания систем управления [6, 13–15]. В работе дано определение обобщенных функций Эрмита, приведены рекуррентные соотношения для их производных, первообразных и получены формулы для расчета спектральных характеристик операторов умножения, дифференцирования и интегрирования (двумерных нестационарных передаточных функций элементарных звеньев систем управления: усилительного, дифференцирующего и интегрирующего). Рассмотрены частные случаи и приведены примеры применения спектральной формы математического описания с использованием обобщенных функций Эрмита к задачам представле-

2

ния функций, их производных и первообразных, к задаче анализа линейных детерминированных систем управления.

Обобщенные функции Эрмита

Как и в работе [9], будем рассматривать полиномы Эрмита второго рода [5], задаваемые выражением

$$G_{j}^{m,D}(x) = (-1)^{j} D^{j} e^{\frac{(x-m)^{2}}{2D}} \frac{d^{j}}{dx^{j}} \left(e^{-\frac{(x-m)^{2}}{2D}} \right),$$
(1)

которые ортогональны с весом $\omega(x) = \frac{1}{\sqrt{2\pi D}} e^{-\frac{(x-m)^2}{2D}}$ на всей числовой оси, т.е.

$$\left(G_i^{m,D}(x),G_j^{m,D}(x)\right)_{L_2((-\infty,+\infty);\omega(x))} = \begin{cases} j!D^j, & i=j,\\ 0, & i\neq j, \end{cases}$$

где *m* и *D* – числовые параметры (D > 0), $(\cdot, \cdot)_{L_2((-\infty, +\infty); \omega(x))}$ – скалярное произведение в пространстве $L_2((-\infty, +\infty); \omega(x))$ [2]:

$$\left(f(x),h(x)\right)_{L_2\left((-\infty,+\infty);\omega(x)\right)} = \int_{-\infty}^{+\infty} \omega(x)f(x)h(x)dx, \quad f(x),h(x) \in L_2\left((-\infty,+\infty);\omega(x)\right).$$

Функции Эрмита определяются следующим образом:

$$\Phi_j^{m,D}(x) = \omega^{\frac{1}{2}}(x)G_j^{m,D}(x), \quad j = 0, 1, 2, \dots$$
(2)

Они ортогональны на всей числовой оси с единичным весом, так как

$$\left(\Phi_{i}^{m,D}(x),\Phi_{j}^{m,D}(x)\right)_{L_{2}\left((-\infty,+\infty)\right)} = \left(G_{i}^{m,D}(x),G_{j}^{m,D}(x)\right)_{L_{2}\left((-\infty,+\infty);\omega(x)\right)} = \begin{cases} j!D^{j}, & i=j,\\ 0, & i\neq j, \end{cases}$$

где $(\cdot, \cdot)_{L_2((-\infty, +\infty))}$ – скалярное произведение в пространстве $L_2((-\infty, +\infty))$:

$$\left(f(x),h(x)\right)_{L_2\left((-\infty,+\infty)\right)} = \int_{-\infty}^{+\infty} f(x)h(x)dx, \quad f(x),h(x) \in L_2\left((-\infty,+\infty)\right).$$

Для представления функций рядами, как правило, удобнее использовать ортонормированные системы [2, 6], поэтому обозначим через $g_j^{m,D}(x)$ нормированные полиномы Эрмита, а через $\varphi_j^{m,D}(x)$ – нормированные функции Эрмита [9]:

$$g_j^{m,D}(x) = \frac{G_j^{m,D}(x)}{\sqrt{h_j}}, \quad \varphi_j^{m,D}(x) = \frac{\Phi_j^{m,D}(x)}{\sqrt{h_j}}, \quad h_j = j!D^j, \quad j = 0, 1, 2, \dots$$

Далее рассмотрим функции

$$E_{j}^{m,D,\alpha}(x) = \omega^{\frac{1-\alpha}{2}}(x)G_{j}^{m,D}(x), \quad j = 0, 1, 2, ...,$$
(3)

где числовой параметр α может принимать любые значения из отрезка [0,1].

Нетрудно видеть, что при $\alpha = 1$ функции $E_j^{m,D,\alpha}(x)$ совпадают с полиномами Эрмита $G_j^{m,D}(x)$, а при $\alpha = 0$ – с функциями Эрмита $\Phi_j^{m,D}(x)$. Функции $E_j^{m,D,\alpha}(x)$ будем называть обобщенными функциями Эрмита. Они ортогональны на всей числовой оси с весом $\omega^{\alpha}(x)$, при этом

$$\left(E_{i}^{m,D,\alpha}(x),E_{j}^{m,D,\alpha}(x)\right)_{L_{2}\left((-\infty,+\infty);\omega^{\alpha}(x)\right)} = \left(G_{i}^{m,D}(x),G_{j}^{m,D}(x)\right)_{L_{2}\left((-\infty,+\infty);\omega(x)\right)} = \begin{cases} j!D^{j}, & i=j,\\ 0, & i\neq j. \end{cases}$$
(4)

В приведенном соотношении $(\cdot, \cdot)_{L_2((-\infty, +\infty);\omega^{\alpha}(x))}$ – скалярное произведение в пространстве $L_2((-\infty, +\infty); \omega^{\alpha}(x))$: $(f(x), h(x))_{L_2((-\infty, +\infty);\omega^{\alpha}(x))} = \int_{-\infty}^{+\infty} \omega^{\alpha}(x) f(x) h(x) dx, \quad f(x), h(x) \in L_2((-\infty, +\infty); \omega^{\alpha}(x)).$ Функции $e_{j}^{m,D,\alpha}(x) = \frac{E_j^{m,D,\alpha}(x)}{2}, \quad i = 0, 1, 2, \dots$ будем называть *нормированными* обоб-

Функции $e_j^{m,D,\alpha}(x) = \frac{E_j^{m,D,\alpha}(x)}{\sqrt{h_j}}, \quad j = 0,1,2,...,$ будем называть нормированными обоб-

щенными функциями Эрмита (при $\alpha = 1$ они совпадают с нормированными полиномами Эрмита $g_j^{m,D}(x)$, а при $\alpha = 0$ – с нормированными функциями Эрмита $\varphi_j^{m,D}(x)$). Доказательство полноты системы функций $\{e_j^{m,D,\alpha}(x)\}_{j=0}^{\infty}$ при $\alpha \in (0,1)$ аналогично доказательству полноты системы функций Эрмита в [2].

Для упрощения обозначений в случае полиномов $G_{j}^{m,D}(x)$ и $g_{j}^{m,D}(x)$, а также функций $\Phi_{j}^{m,D}(x)$ и $\varphi_{j}^{m,D}(x)$ будем опускать параметры *m* и *D*, а для функций $E_{j}^{m,D,\alpha}(x)$ и $e_{j}^{m,D,\alpha}(x)$ не будем указывать параметры *m*, *D* и α .

Для полиномов Эрмита $G_i(x)$ справедлива рекуррентная формула [5, 9]

$$G_{j+1}(x) = (x-m)G_j(x) - jDG_{j-1}(x), \quad G_0(x) = 1, \quad j = 0, 1, 2, ...,$$

а так как обобщенные функции Эрмита $E_j(x)$ (и функции Эрмита $\Phi_j(x)$, которые являются их частным случаем), от полиномов $G_j(x)$ отличаются множителем, не зависящим от номера функции, то аналогичные рекуррентные формулы (с точностью до обозначений) справедливы и для функций $E_j(x)$ и $\Phi_j(x)$, в частности,

$$E_{j+1}(x) = (x-m)E_j(x) - jDE_{j-1}(x), \quad E_0(x) = \omega^{\frac{1-\alpha}{2}}(x), \quad j = 0, 1, 2, \dots$$
(5)

Эти соотношения удобны для получения явных формул. Так, например, первые четыре обобщенные функции Эрмита имеют вид

$$E_{0}(x) = \left(\frac{1}{\sqrt{2\pi D}}e^{-\frac{(x-m)^{2}}{2D}}\right)^{\frac{1-\alpha}{2}}, \quad E_{1}(x) = \left(\frac{1}{\sqrt{2\pi D}}e^{-\frac{(x-m)^{2}}{2D}}\right)^{\frac{1-\alpha}{2}}(x-m), \quad E_{2}(x) = \left(\frac{1}{\sqrt{2\pi D}}e^{-\frac{(x-m)^{2}}{2D}}\right)^{\frac{1-\alpha}{2}} \times (x^{2} - 2mx + m^{2} - D), \quad E_{3}(x) = \left(\frac{1}{\sqrt{2\pi D}}e^{-\frac{(x-m)^{2}}{2D}}\right)^{\frac{1-\alpha}{2}}(x^{3} - 3mx^{2} + (3m^{2} - 3D)x - m^{3} + 3mD).$$

Их графики при m = 0, D = 1 и различных значениях α изображены на рис. 1–4.

Нормированные обобщенные функции Эрмита будем использовать для представления функций – элементов пространства $L_2((-\infty, +\infty); \omega^{\alpha}(x))$ – в виде ряда [2, 6]:

$$f(x) = \sum_{j=0}^{\infty} f_j e_j(x), \quad f(x) \in L_2\left((-\infty, +\infty); \omega^{\alpha}(x)\right), \tag{6}$$

где числа f_j определяются соотношением

$$f_{j} = \left(e_{j}(x), f(x)\right)_{L_{2}\left((-\infty, +\infty); \omega^{\alpha}(x)\right)} = \int_{-\infty}^{+\infty} \omega^{\alpha}(x) e_{j}(x) f(x) dx, \quad j = 0, 1, 2, ...,$$
(7)

и называются коэффициентами разложения функции f(x) относительно системы функций $\{e_i(x)\}_{i=0}^{\infty}$.

Напомним, что упорядоченную совокупность коэффициентов разложения f_j , представленную в виде бесконечной матрицы-столбца [3, 6, 15] [f_0 f_1 f_2 ...]^T, называют спектральной характеристикой функции f(x) (здесь ^T означает транспонирование).

Пример 1. Рассмотрим задачу приближенного представления функции $f(x) = e^{-(x-1)^2}$ в виде ряда по нормированным обобщенным функциям Эрмита.

Найдем коэффициенты разложения, используя формулу (7):

$$f_j = \int_{-\infty}^{+\infty} \omega^{\alpha}(x) e_j(x) e^{-(x-1)^2} dx,$$

ограничившись конечным числом первых N членов ряда (6), в этом случае функция

$$f_N(x) = \sum_{j=0}^{N-1} f_j e_j(x)$$
(8)

является наилучшим приближением f(x) в пространстве $L_2((-\infty, +\infty); \omega^{\alpha}(x))$ [16], т.е.

$$f(x) \approx f_N(x), \quad \left\| f(x) - f_N(x) \right\|_{L_2\left((-\infty, +\infty); \omega^{\alpha}(x)\right)} \to 0 \quad \text{при} \quad N \to \infty.$$
(9)

Очевидно, что коэффициенты разложения зависят от числовых параметров m, D и α . Сравним погрешности аппроксимации функции f(x) функцией $f_N(x)$ при различных N и α , положив m = 0 и $D = \frac{1}{2}$. Погрешность аппроксимации будем вычислять, используя три критерия:

$$J_{1}(f, f_{N}) = \left\| f(x) - f_{N}(x) \right\|_{L_{2}\left((-\infty, +\infty); \omega^{\alpha}(x)\right)} = \left\{ \int_{-\infty}^{+\infty} \omega^{\alpha}(x) (f(x) - f_{N}(x))^{2} dx \right\}^{\frac{1}{2}},$$

$$J_{2}(f, f_{N}) = \left\| f(x) - f_{N}(x) \right\|_{L_{2}\left((-\infty, +\infty)\right)} = \left\{ \int_{-\infty}^{+\infty} (f(x) - f_{N}(x))^{2} dx \right\}^{\frac{1}{2}},$$

$$J_{3}(f, f_{N}) = \left\| f(x) - f_{N}(x) \right\|_{C\left((-\infty, +\infty)\right)} = \sup_{-\infty < x < +\infty} \left| f(x) - f_{N}(x) \right|.$$
(10)

Результаты расчетов приведены на рис. 5-8 и в таблице 1.

Погрешности аппроксимации функции f(x) при различных α и N

	$\alpha = 0$	$\alpha = \frac{1}{3}$	$\alpha = \frac{1}{2}$	$\alpha = 1$
	0.112455/	0.101199/	0.092361/	0.071997/
N = 4	0.112455/	0.220128/	0.362243/	_/
	0.077079	0.137704	0.258464	_
	0.005680/	0.011924/	0.015042/	0.019967/
N = 8	0.005680/	0.094106/	0.441647/	_/
	0.003266	0.084435	0.346429	_
	0.000109/	0.000244/	0.000324/	0.000962/
N = 16	0.000109/	0.020224/	0.784199/	_/
	0.000053	0.018432	0.504466	—

На представленных рисунках толстой линией показан график функции f(x), а тонкой – графики функций $f_N(x)$ при различных N, в следующих примерах принята такая же сис-

тема обозначений: толстая линия для аппроксимируемой функции, тонкие – для ее приближений. В таблице 1 и в последующих таблицах, если это не оговорено особо, данные (погрешности, вычисленные по различным критериям) представлены в форме $J_1/J_2/J_3$.

Пример 2. Рассмотрим задачу приближенного представления плотности логарифмически нормального распределения

$$f(x) = \begin{cases} \frac{1}{x\sqrt{2\pi\sigma}} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, & x > 0, \\ 0, & x \le 0, \end{cases}$$

с параметрами $\mu = 1$, $\sigma^2 = \frac{1}{5}$ в виде ряда по нормированным обобщенным функциям Эрмита. Как и в примере 1, найдем коэффициенты разложения, используя формулу (7):

$$f_{j} = \frac{\sqrt{5}}{\sqrt{2\pi}} \int_{0}^{+\infty} \omega^{\alpha}(x) e_{j}(x) \frac{1}{x} e^{-\frac{5(\ln x - 1)^{2}}{2}} dx,$$

и ограничимся конечным числом первых N членов ряда (6), в этом случае функция $f_N(x)$ аппроксимирует f(x) в пространстве $L_2((-\infty, +\infty); \omega^{\alpha}(x))$ (см. (8) и (9)). Используя критерии (10), сравним погрешности аппроксимации функции f(x) функцией $f_N(x)$ при различных N и α , положив m = 3 и D = 1 (см. рис. 9–12 и табл. 2).

Проведенные в примерах 1 и 2 расчеты показывают, что значение критерия J_1 убывает с ростом N (*порядка усечения*) (отметим, что значения критериев J_2 и J_3 не определены при $\alpha = 1$, так как в этом случае модуль разности $f(x) - f_N(x)$ неограниченно возрастает при $x \to \infty$ и фиксированном N).

Погрешности аппроксимации функции f(x) при различных α и N

	$\alpha = 0$	$\alpha = \frac{1}{3}$	$\alpha = \frac{1}{2}$	$\alpha = 1$
	0.060035/	0.044643/	0.039420/	0.031663/
N = 4	0.060035/	0.115902/	0.219134/	_/
	0.049587	0.073689	0.140157	—
	0.032141/	0.023297/	0.019621/	0.011905/
N = 8	0.032141/	0.094601/	0.337968/	_/
	0.027641	0.057536	0.223236	—
	0.009743/	0.006132/	0.004935/	0.002739/
N = 16	0.009743/	0.320016/	6.981292/	_/
	0.008399	0.179507	3.903064	—

Критерии J_2 и J_3 характеризуют среднеквадратическое и равномерное приближение функции f(x) функциями $f_N(x)$ без учета веса; погрешность, рассчитанная по этим критериям приведена для сравнения. Если при решении задачи аппроксимации функции ориентироваться на подобные критерии, то имеет смысл (особенно с ростом α) рассчитывать погрешности по формулам, аналогичным для J_2 и J_3 в (10), только для конечных подмножеств множества действительных чисел.

Отметим также, что существенное влияние на точность аппроксимации при фиксированном N оказывает выбор параметров m и D.

Спектральные характеристики линейных операторов

Используя определение обобщенных функций Эрмита и рекуррентную формулу для них (см. (3) и (5)), получим соотношения для вычисления спектральных характеристик линейных операторов: умножения, дифференцирования и интегрирования. Эти соотношения требуются, например, для решения задачи анализа выходных процессов линейных детерминированных нестационарных систем управления (как при детерминированных, так и при случайных воздействиях) с помощью спектральной формы математического описания [4, 14, 15].

Важно отметить, что полученные здесь соотношения могут быть полезными и для более сложных задач: анализа и синтеза нелинейных детерминированных и стохастических систем управления [6, 8, 12].

Предложенную методику вывода соотношений можно использовать и для расчета спектральных характеристик других линейных операторов: операторов Фредгольма, операторов сдвига и т.п. [2], необходимых при применении спектральной формы математического описания к решению, например, линейных интегральных уравнений и уравнений с отклоняющимся аргументом [11].

Спектральные характеристики операторов умножения

Рассмотрим оператор умножения на функцию a(x), т.е. линейный оператор, ставящий в соответствие функции f(x) произведение a(x)f(x).

Спектральной характеристикой оператора умножения на функцию a(x) (двумерной нестационарной передаточной функцией усилительного звена) называется бесконечная двумерная матрица A, элементы которой вычисляются следующим образом [6, 15]:

$$A_{ij} = \int_{-\infty}^{+\infty} \omega^{\alpha}(x) a(x) e_i(x) e_j(x) dx = \frac{A_{ij}}{\sqrt{h_i h_j}}, \quad i, j = 0, 1, 2, ...,$$

где

$$\tilde{A}_{ij} = \int_{-\infty}^{+\infty} \omega^{\alpha}(x) a(x) E_i(x) E_j(x) dx.$$
(11)

Для получения рекуррентных формул, требующихся при вычислении элементов \tilde{A}_{ij+1} , преобразуем произведение $E_i(x)E_{i+1}(x)$, используя соотношение (5):

$$\begin{split} E_i(x)E_{j+1}(x) &= E_i(x)\Big((x-m)E_j(x) - jDE_{j-1}(x)\Big) = (x-m)E_i(x)E_j(x) - jDE_i(x)E_{j-1}(x) = \\ &= \big(E_{i+1}(x) + iDE_{i-1}(x)\big)E_j(x) - jDE_i(x)E_{j-1}(x) = E_{i+1}(x)E_j(x) + iDE_{i-1}(x)E_j(x) - jDE_i(x)E_{j-1}(x), \\ \text{следовательно, } \tilde{A}_{ij+1} &= \tilde{A}_{i+1j} + iD\tilde{A}_{i-1j} - jD\tilde{A}_{ij-1}. \end{split}$$

Заметим, что полученное выражение совпадает с рекуррентной формулой для элементов спектральной характеристики оператора умножения в случае полиномов Эрмита ($\alpha = 1$) и функций Эрмита ($\alpha = 0$), полученной в [9].

Наряду с найденным соотношением можно использовать свойство симметричности спектральной характеристики оператора умножения: $\tilde{A}_{ij} = \tilde{A}_{ji}$.

Элементы \tilde{A}_{i0} и \tilde{A}_{0j} можно вычислить по определению:

$$\tilde{A}_{i0} = \int_{-\infty}^{+\infty} \omega^{\alpha}(x)a(x)E_i(x)E_0(x)dx, \quad \tilde{A}_{0j} = \int_{-\infty}^{+\infty} \omega^{\alpha}(x)a(x)E_0(x)E_j(x)dx = \tilde{A}_{j0}.$$

Рассмотрим частный случай, когда $a(x) = (x-m)^n$ $(n - заданное целое неотрицательное число). Умножая левую и правую части соотношения (5) на <math>(x-m)^n E_i(x)$, где m – один из параметров обобщенных функций Эрмита, имеем

$$(x-m)^{n} E_{i}(x) E_{j+1}(x) = (x-m)^{n+1} E_{i}(x) E_{j}(x) - jD(x-m)^{n} E_{i}(x) E_{j-1}(x),$$

или

$$(x-m)^{n+1}E_i(x)E_j(x) = (x-m)^n E_i(x)E_{j+1}(x) + jD(x-m)^n E_i(x)E_{j-1}(x)$$

Отсюда несложно получить, что элементы A_{ij}^n спектральной характеристики оператора умножения на функцию $(x-m)^n$ связаны соотношением

$$A_{ij}^n = \frac{\hat{A}_{ij}^n}{\sqrt{h_i h_j}},$$

причем

$$\hat{A}_{ij}^{n+1} = \hat{A}_{ij+1}^{n} + jD\hat{A}_{ij-1}^{n}.$$
(12)

$$\Pi \pi n = 0 \quad \hat{A}_{ij}^{n} = \Delta_{ij}, \ \Gamma \exists e$$
(12)

$$\Delta_{ij} = \begin{cases} n_j, \quad i = j, \\ 0, \quad i \neq j, \end{cases} \quad \text{или} \quad \Delta_{ij} = \begin{cases} j! D^j, \quad i = j, \\ 0, \quad i \neq j, \end{cases}$$
(13)

что является следствием ортогональности обобщенных функций Эрмита (см. (4)).

Заметим, что матрица с элементами Δ_{ij} (ненормированная спектральная характеристика оператора умножения на функцию $(x-m)^0 = 1$) представляет собой диагональную матрицу, поэтому с учетом (12) получаем, что матрицы с элементами \hat{A}_{ij}^n (ненормированные спектральные характеристики операторов умножения на функции $(x-m)^n$) при n > 0 являются ленточными матрицами [7] (при n = 1 – трехдиагональной, при n = 2 – пятидиагональной и т.д.). На основании этого, а также свойства симметричности ($\hat{A}_{ij}^n = \hat{A}_{ji}^n$) имеем

$$\hat{A}_{ij}^{n} = egin{cases} \Delta_{ij}, & n = 0, \ 0, & |i - j| > n, \ \hat{A}_{ij+1}^{n-1} + j D \hat{A}_{ij-1}^{n-1}, & i \leq j, \ \hat{A}_{ji}^{n}, & i > j. \end{cases}$$

Это соотношение можно использовать для вычисления элементов спектральной характеристики A оператора умножения на функцию $a(x) = x^n$:

$$A_{ij}^n = \frac{\tilde{A}_{ij}^n}{\sqrt{h_i h_j}},$$

где

$$\tilde{A}_{ij}^{n} = \sum_{k=0}^{n} C_{n}^{k} m^{n-k} \hat{A}_{ij}^{k}.$$
(14)

Последнее выражение следует из разложения функции x^n по степеням (x-m) и свойства линейности интеграла (11); $C_n^k = \frac{n!}{k!(n-k)!}$ – число сочетаний из n по k.

В качестве примера приведем спектральную характеристику оператора умножения на функцию a(x) = x при m = 0, $D = \frac{1}{2}$, $\alpha = \frac{1}{3}$:

$$A = \begin{pmatrix} 0 & \sqrt{\frac{1}{2}} & 0 & 0 & \cdots \\ \sqrt{\frac{1}{2}} & 0 & 1 & 0 & \cdots \\ 0 & 1 & 0 & \sqrt{\frac{3}{2}} & \cdots \\ 0 & 0 & \sqrt{\frac{3}{2}} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Пример 3. Рассмотрим задачу приближенного представления функции $w(x) = x e^{-(x-1)^2}$ в виде ряда по нормированным обобщенным функциям Эрмита.

Воспользуемся результатами примера 1, в котором вычислялись коэффициенты разложения функции $f(x) = e^{-(x-1)^2}$ относительно системы нормированных обобщенных функций Эрмита. Эти коэффициенты образуют спектральную характеристику *F* функции f(x), которая представляет собой бесконечную (или конечную в случае представления функции конечным отрезком ряда) матрицу-столбец:

$$F = \begin{bmatrix} f_0 & f_1 & f_2 & \dots \end{bmatrix}^{\mathrm{T}}.$$
(15)

Используя свойства спектральных характеристик операторов умножения [6, 15], можно вычислить спектральную характеристику W функции w(x) как произведение спектральной характеристики A оператора умножения на функцию a(x) = x и спектральной характеристики F функции f(x):

$$W = A \cdot F = \begin{bmatrix} w_0 & w_1 & w_2 & \dots \end{bmatrix}^{\mathrm{T}},$$

и, таким образом, приближенно получить коэффициенты разложения w_j функции w(x) относительно системы нормированных обобщенных функций Эрмита, т.е.

$$w(x) \approx w_N(x) = \sum_{j=0}^{N-1} w_j e_j(x) = \sum_{j=0}^{N-1} \left(\sum_{i=0}^{N-1} A_{ji} f_i \right) e_j(x).$$

Здесь важно подчеркнуть, что спектральные характеристики F, A и W определены относительно одной и той же системы функций $\{e_j(x)\}_{j=0}^{\infty}$ (имеющих фиксированные параметры m, D и α). Эти спектральные характеристики при приближенном решении задачи имеют одинаковый порядок усечения N, т.е. A – квадратная матрица размеров $N \times N$, F и W – матрицы-столбцы размеров $N \times 1$. Для получения точного решения спектральные характеристики не усекаются, в этом случае F, A и W – бесконечные матрицы [3, 6].

Как и в примере 1, положим m = 0 и $D = \frac{1}{2}$ и найдем функцию $w_N(x)$ при различных *N* и α . Погрешность аппроксимации функции w(x) функцией $w_N(x)$ будем вычислять по критериям (10). Результаты расчетов приведены на рис. 13–16 и в таблице 3.

Соотношения для элементов спектральной характеристики множительного звена (трехмерной нестационарной передаточной функции множительного звена), необходимость в которой возникает при анализе и синтезе нелинейных систем управления, аналогичны полученным в [9]:

$$V_{ijk} = \int_{-\infty}^{+\infty} \omega^{\alpha}(x) e_i(x) e_j(x) e_k(x) dx = \frac{\tilde{V}_{ijk}}{\sqrt{h_i h_j h_k}}, \quad i, j, k = 0, 1, 2, ...,$$

где

 $\tilde{V}_{ijk+1} = \tilde{V}_{ij+1k} + jD\tilde{V}_{ij-1k} - kD\tilde{V}_{ijk-1}.$

При $\alpha = 1$ элементы V_{0jk} , V_{i0k} , V_{ij0} – это элементы единичной матрицы, а при $\alpha \neq 1$ – их можно вычислять с помощью определения. Кроме того, при вычислении этой характеристики нужно использовать свойство симметричности: $V_{ijk} = V_{ikj} = V_{jik} = V_{jki} = V_{kij} = V_{kij}$.

Таблица 3

Погрешности аппроксимации функции w(x) при различных α и N

	$\alpha = 0$	$\alpha = \frac{1}{3}$	$\alpha = \frac{1}{2}$	$\alpha = 1$
	0.227673/	0.221761/	0.203314/	0.142124/
N = 4	0.227673/	0.628256/	1.002709/	_/
	0.210512	0.573349	0.863621	—
	0.024555/	0.026694/	0.034887/	0.046266/
N = 8	0.024555/	0.303896/	1.758577/	_/
	0.013792	0.197122	1.173026	—
	0.000382/	0.001041/	0.001251/	0.002547/
N = 16	0.000382/	0.100573/	1.916836/	_/
	0.000248	0.093576	1.400537	—

Спектральные характеристики операторов дифференцирования

Найдем соотношение, связывающее обобщенные функции Эрмита и их производные. Воспользуемся определением (3):

$$E'_{j}(x) = \omega^{\frac{1-\alpha}{2}}(x)G'_{j}(x) + \left(\omega^{\frac{1-\alpha}{2}}(x)\right)'G_{j}(x) = j\omega^{\frac{1-\alpha}{2}}(x)G_{j-1}(x) + \frac{1-\alpha}{2}\omega^{-\frac{1+\alpha}{2}}(x)\left(-\frac{x-m}{D}\right)\omega(x)G_{j}(x) = jE_{j-1}(x) - \frac{1-\alpha}{2D}(x-m)E_{j}(x).$$
(16)

Затем выразим функцию $(x-m)E_i(x)$ из соотношения (5):

$$(x-m)E_{j}(x) = E_{j+1}(x) + jDE_{j-1}(x).$$
(17)

Подставляя (17) в (16), получаем

$$E'_{j}(x) = j \frac{1+\alpha}{2} E_{j-1}(x) - \frac{1-\alpha}{2D} E_{j+1}(x).$$
(18)

Напомним определение спектральной характеристики оператора дифференцирования, ставящего в соответствие функции f(x) ее производную f'(x). Спектральной характеристикой \mathcal{P} оператора дифференцирования называется бесконечная двумерная матрица, элементы которой задаются в виде [6, 15]

$$\mathcal{P}_{ij} = \frac{\mathcal{P}_{ij}}{\sqrt{h_i h_j}}, \quad i, j = 0, 1, 2, ...,$$
(19)

где

$$\tilde{\mathcal{P}}_{ij} = \int_{-\infty}^{+\infty} \omega^{\alpha}(x) E_i(x) E'_j(x) dx.$$
(20)

Матрица *P* также называется двумерной нестационарной передаточной функцией дифференцирующего звена.

Подставляя правую часть равенства (18) в (20) и учитывая условие ортогональности обобщенных функций Эрмита с весом $\omega^{\alpha}(x)$, находим выражение для элементов $\tilde{\mathcal{P}}_{ii}$:

$$\tilde{\mathcal{P}}_{ij} = j \frac{1+\alpha}{2} \Delta_{ij-1} - \frac{1-\alpha}{2D} \Delta_{ij+1}.$$
(21)

Так как матрица с элементами Δ_{ij} диагональная (см (13)), спектральная характеристика \mathcal{P} при $\alpha \in [0,1)$ представляет собой матрицу, у которой отличны от нуля только элементы \mathcal{P}_{ij} , индексы которых связаны соотношением |i - j| = 1. При $\alpha = 1$ только элементы вида \mathcal{P}_{ii+1} отличны от нуля. Формула для вычисления элементов \mathcal{P}_{ij} спектральной характеристики \mathcal{P} при i = j-1

записывается в виде

$$\mathcal{P}_{ij} = j \frac{1+\alpha}{2} \frac{h_{j-1}}{\sqrt{h_i h_j}} = j \frac{1+\alpha}{2} \frac{(j-1)! D^{j-1}}{\sqrt{(j-1)! D^{j-1} j! D^j}} = j \frac{1+\alpha}{2} \sqrt{\frac{(j-1)!}{j! D}} = \frac{1+\alpha}{2} \sqrt{\frac{j}{D}}.$$

Аналогично, при i = j + 1 получаем

$$\mathcal{P}_{ij} = -\frac{1-\alpha}{2D} \frac{h_i}{\sqrt{h_i h_j}} = -\frac{1-\alpha}{2D} \frac{(j+1)! D^{j+1}}{\sqrt{(j+1)! D^{j+1} j! D^j}} = -\frac{1-\alpha}{2D} \sqrt{\frac{(j+1)! D^{j+1}}{j! D^j}} = -\frac{1-\alpha}{2} \sqrt{\frac{i}{D}}$$

Таким образом,

$$\mathcal{P}_{ij} = \begin{cases} \frac{(1+\alpha)}{2} \sqrt{\frac{j}{D}}, & i = j-1, \\ 0, & i \neq j-1, & i \neq j+1, \\ -\frac{(1-\alpha)}{2} \sqrt{\frac{i}{D}}, & i = j+1. \end{cases}$$

Например, при D = 1 и $\alpha = \frac{1}{3}$ спектральная характеристика оператора дифференцирования имеет вид

$$\mathcal{P} = \begin{pmatrix} 0 & \frac{2}{3} & 0 & 0 & \cdots \\ -\frac{1}{3} & 0 & \frac{2\sqrt{2}}{3} & 0 & \cdots \\ 0 & -\frac{\sqrt{2}}{3} & 0 & \frac{2\sqrt{3}}{3} & \cdots \\ 0 & 0 & -\frac{\sqrt{3}}{3} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Пример 4. Рассмотрим задачу приближенного представления производной w(x) = f'(x) плотности логарифмически нормального распределения с параметрами $\mu = 1$ и $\sigma^2 = \frac{1}{5}$ (см. пример 2) в виде ряда по нормированным обобщенным функциям Эрмита.

Воспользуемся результатами примера 2, в котором приведена формула расчета коэффициентов разложения f_j относительно системы нормированных обобщенных функций Эрмита. Эти коэффициенты образуют спектральную характеристику F функции f(x), которая представляет собой бесконечную (или конечную в случае представления функции конечным отрезком ряда) матрицу-столбец (см. (15)).

Используя свойства спектральных характеристик оператора дифференцирования [6, 15], получаем

 $W = \mathcal{P} \cdot F = \begin{bmatrix} w_0 & w_1 & w_2 & \dots \end{bmatrix}^{\mathrm{T}},$

где W – спектральная характеристика функции w(x) = f'(x), элементы которой представляют собой коэффициенты разложения этой функции относительно системы $\{e_j(x)\}_{j=0}^{\infty}$. Следовательно,

$$w(x) \approx w_N(x) = \sum_{j=0}^{N-1} w_j e_j(x) = \sum_{j=0}^{N-1} \left(\sum_{i=0}^{N-1} \mathcal{P}_{ji} f_i \right) e_j(x).$$

Как и в примере 3, спектральные характеристики F, \mathcal{P} и W определены относительно одной и той же системы функций $\{e_j(x)\}_{j=0}^{\infty}$. Эти спектральные характеристики при приближенном решении задачи имеют одинаковый порядок усечения N, т.е. \mathcal{P} – квадратная матрица размеров $N \times N$, F и W – матрицы-столбцы размеров $N \times 1$. Для получения точного решения спектральные характеристики не усекаются, в этом случае F, \mathcal{P} и W – бесконечные матрицы.

Положим m = 3 и D = 1 и найдем функцию $w_N(x)$ при различных N и α . Погрешность аппроксимации функции w(x) функцией $w_N(x)$ будем вычислять по критериям (10). Результаты расчетов приведены на рис. 17–20 и в таблице 4.

Далее рассмотрим оператор дифференцирования второго порядка, ставящий в соответствие функции f(x) ее вторую производную f''(x). Элементы спектральной характеристики \mathcal{P}^2 этого оператора задаются выражением

$$\mathcal{P}_{ij}^{2} = \frac{\tilde{\mathcal{P}}_{ij}^{2}}{\sqrt{h_{i}h_{j}}}, \quad i, j = 0, 1, 2, ...,$$
(22)

где

$$\tilde{\mathcal{P}}_{ij}^2 = \int_{-\infty}^{+\infty} \omega^{\alpha}(x) E_i(x) E_j''(x) dx,$$
(23)

или, согласно свойствам композиции линейных операторов [6],

$$\mathcal{P}^2 = \mathcal{P} \cdot \mathcal{P}. \tag{24}$$

При усечении спектральных характеристик (которое используется, например, для приближенного решения задачи представления функций и их производных) формула (24) в общем случае оказывается неверна. При приближенных расчетах можно использовать как $\mathcal{P} \cdot \mathcal{P}$, так и \mathcal{P}^2 , однако в последнем случае точность приближения производных будет выше.

Таблица 4

Погрешности аппроксимации функции w(x) при различных α и N

	$\alpha = 0$	$\alpha = \frac{1}{3}$	$\alpha = \frac{1}{2}$	$\alpha = 1$
	0.199527/	0.137216/	0.115631/	0.077894/
N = 4	0.199527/	0.255708/	0.335094/	_/
	0.177967	0.175831	0.214855	—
	0.102511/	0.072595/	0.061041/	0.034587/
N = 8	0.102511/	0.198334/	0.607787/	_/
	0.093201	0.118254	0.313022	—
	0.047501/	0.002947/	0.023035/	0.011868/
N = 16	0.047501/	1.013153/	16.838571/	_/
	0.047057	0.574857	8.455914	—

Для получения рекуррентных соотношений, связывающих элементы $\tilde{\mathcal{P}}_{ij}^2$, продифференцируем левую и правую части равенства (18) и воспользуемся полученным результатом для преобразования (23). Тогда

$$\tilde{\mathcal{P}}_{ij}^{2} = j \frac{1+\alpha}{2} \,\tilde{\mathcal{P}}_{ij-1} - \frac{1-\alpha}{2D} \,\tilde{\mathcal{P}}_{ij+1}.$$
(25)

Далее воспользуемся выражением (21) для элементов спектральной характеристики оператора дифферецирования:

$$\begin{split} \tilde{\mathcal{P}}_{ij}^{2} &= j \frac{1+\alpha}{2} \bigg[(j-1) \frac{1+\alpha}{2} \Delta_{ij-2} - \frac{1-\alpha}{2D} \Delta_{ij} \bigg] - \frac{1-\alpha}{2D} \bigg[(j+1) \frac{1+\alpha}{2} \Delta_{ij} - \frac{1-\alpha}{2D} \Delta_{ij+2} \bigg] = \\ &= j(j-1) \frac{(1+\alpha)^{2}}{4} \Delta_{ij-2} - j \frac{1-\alpha^{2}}{4D} \Delta_{ij} - (j+1) \frac{1-\alpha^{2}}{4D} \Delta_{ij} + \frac{(1-\alpha)^{2}}{4D^{2}} \Delta_{ij+2} = \\ &= j(j-1) \frac{(1+\alpha)^{2}}{4} \Delta_{ij-2} - (2j+1) \frac{1-\alpha^{2}}{4D} \Delta_{ij} + \frac{(1-\alpha)^{2}}{4D^{2}} \Delta_{ij+2}. \end{split}$$

Опираясь на соотношения (13) и (22), находим выражение для вычисления элементов \mathcal{P}_{ij}^2 спектральной характеристики \mathcal{P}^2 при i = j:

$$\mathcal{P}_{ij}^{2} = -(2j+1)\frac{1-\alpha^{2}}{4D}\frac{h_{j}}{\sqrt{h_{i}h_{j}}} = -(2j+1)\frac{1-\alpha^{2}}{4D}\sqrt{\frac{h_{j}}{h_{i}}} = -\frac{2j+1}{4D}(1-\alpha^{2}).$$

Аналогично, при i = j - 2 получаем

$$\mathcal{P}_{ij}^{2} = j(j-1)\frac{(1+\alpha)^{2}}{4}\frac{h_{j-2}}{\sqrt{h_{i}h_{j}}} = j(j-1)\frac{(1+\alpha)^{2}}{4}\sqrt{\frac{(j-2)!D^{j-2}}{j!D^{j}}} = j(j-1)\frac{(1+\alpha)^{2}}{4}\sqrt{\frac{1}{j(j-1)D^{2}}} = \frac{\sqrt{j(j-1)}}{4D}(1+\alpha)^{2},$$

а при i = j + 2 —

$$\mathcal{P}_{ij}^{2} = \frac{(1-\alpha)^{2}}{4D^{2}} \frac{h_{j+2}}{\sqrt{h_{i}h_{j}}} = \frac{(1-\alpha)^{2}}{4D^{2}} \sqrt{\frac{(j+2)!D^{j+2}}{j!D^{j}}} = \frac{\sqrt{(j+1)i}}{4D} (1-\alpha)^{2}.$$

При любом другом соотношении между индексами i и $j \mathcal{P}_{ij}^2 = 0$. Таким образом, окончательно получаем

$$\mathcal{P}_{ij}^{2} = \begin{cases} -\frac{2j+1}{4D}(1-\alpha^{2}), & i = j, \\ \frac{\sqrt{j(j-1)}}{4D}(1+\alpha)^{2}, & i = j-2, \\ \frac{\sqrt{(j+1)i}}{4D}(1-\alpha)^{2}, & i = j+2, \\ 0, & i \neq j, & i \neq j-2, & i \neq j+2. \end{cases}$$

Например, при D = 1 и $\alpha = \frac{1}{3}$ спектральная характеристика оператора дифференцирования второго порядка имеет вид

$$\mathcal{P}^{2} = \begin{pmatrix} -\frac{2}{9} & 0 & \frac{4\sqrt{2}}{9} & 0 & \cdots \\ 0 & -\frac{2}{3} & 0 & \frac{4\sqrt{6}}{9} & \cdots \\ \frac{\sqrt{2}}{9} & 0 & -\frac{10}{9} & 0 & \cdots \\ 0 & \frac{\sqrt{6}}{9} & 0 & -\frac{14}{9} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Используя такую же методику, находим соотношения для спектральной характеристики \mathcal{P}^n оператора дифференцирования порядка n:

$$\mathcal{P}_{ij}^{n} = \frac{\tilde{\mathcal{P}}_{ij}^{n}}{\sqrt{h_{i}h_{j}}}, \quad i, j = 0, 1, 2, ...,$$

где

$$\tilde{\mathcal{P}}_{ij}^{n} = \begin{cases} \Delta_{ij}, & n = 0, \\ j \frac{1+\alpha}{2} \tilde{\mathcal{P}}_{ij-1}^{n-1} - \frac{1-\alpha}{2D} \tilde{\mathcal{P}}_{ij+1}^{n-1}, & n > 0. \end{cases}$$

Очевидно, что выражения (19), (21) и (22), (25) являются частными случаями двух последних соотношений при n = 1 и n = 2 соответственно. Заметим также, что

$$\mathcal{P}^n = \underbrace{\mathcal{P} \cdot \mathcal{P} \cdots \mathcal{P}}_n.$$

Спектральные характеристики операторов интегрирования

Далее рассмотрим оператор интегрирования, ставящий в соответствие функции f(x) ее первообразную $\int_{0}^{x} f(\xi) d\xi$. Спектральной характеристикой оператора интегрирования (двумерной нестационарной передаточной функцией интегрирующего звена) называется бесконечная двумерная матрица P^{-1} , элементы которой вычисляются следующим образом [6, 15]:

$$P_{ij}^{-1} = \frac{\tilde{P}_{ij}^{-1}}{\sqrt{h_i h_j}}, \quad i, j = 0, 1, 2, \dots,$$

где

$$\tilde{P}_{ij}^{-1} = \int_{-\infty}^{+\infty} \omega^{\alpha}(x) E_i(x) \left(\int_{0}^{x} E_j(\xi) d\xi \right) dx.$$
(26)

Найдем вспомогательные рекуррентные соотношения для обобщенных функций Эрмита (3), проинтегрировав левую и правую части равенства (18):

$$\int_{0}^{x} E_{j}'(\xi) d\xi = j \frac{1+\alpha}{2} \int_{0}^{x} E_{j-1}(\xi) d\xi - \frac{1-\alpha}{2D} \int_{0}^{x} E_{j+1}(\xi) d\xi,$$

или

$$E_{j}(x) - E_{j}(0) = j \frac{1+\alpha}{2} \int_{0}^{x} E_{j-1}(\xi) d\xi - \frac{1-\alpha}{2D} \int_{0}^{x} E_{j+1}(\xi) d\xi,$$

и выразим $\int_{0}^{x} E_{j+1}(\xi) d\xi$:

$$\int_{0}^{x} E_{j+1}(\xi) d\xi = \frac{2D}{1-\alpha} \left[j \frac{1+\alpha}{2} \int_{0}^{x} E_{j-1}(\xi) d\xi + E_{j}(0) - E_{j}(x) \right], \quad \alpha \neq 1.$$
(27)

Получим рекуррентную формулу для расчета элементов спектральной характеристики оператора интегрирования. Для этого запишем выражение, определяющее значение \tilde{P}_{ij+1}^{-1} , и воспользуемся (27):

$$\tilde{P}_{ij+1}^{-1} = \frac{2D}{1-\alpha} \left[j \frac{1+\alpha}{2} \int_{-\infty}^{+\infty} \omega^{\alpha}(x) E_{i}(x) \int_{0}^{x} E_{j-1}(\xi) d\xi dx + E_{j}(0) \int_{-\infty}^{+\infty} \omega^{\alpha}(x) E_{i}(x) dx - \int_{-\infty}^{+\infty} \omega^{\alpha}(x) E_{i}(x) E_{j}(x) dx \right] = \\ = \frac{2D}{1-\alpha} \left[j \frac{1+\alpha}{2} \tilde{P}_{ij-1}^{-1} + E_{j}(0) \int_{-\infty}^{+\infty} \omega^{\alpha}(x) E_{i}(x) dx - \Delta_{ij} \right] = jD \frac{1+\alpha}{1-\alpha} \tilde{P}_{ij-1}^{-1} + \frac{2D}{1-\alpha} \tilde{X}_{i}^{0} E_{j}(0) - \frac{2D}{1-\alpha} \Delta_{ij}, \quad (28)$$

где

$$\tilde{X}_{i}^{0} = \int_{-\infty}^{+\infty} \omega^{\alpha}(x) E_{i}(x) dx, \quad i = 0, 1, 2, \dots$$
(29)

Фактически \tilde{X}_{i}^{0} – элементы *ненормированной спектральной характеристики функции* f(x) = 1, определенной относительно системы обобщенных функций Эрмита (3). Для вычисления этих элементов снова воспользуемся соотношением (18), а \tilde{X}_{0}^{0} найдем непосредственно из соотношения (29). Тогда

$$\tilde{X}_{i}^{0} = \begin{cases} \sqrt{\frac{4\pi D}{1+\alpha}} (2\pi D)^{-\frac{1+\alpha}{4}}, & i = 0, \\ (i-1)D\frac{1-\alpha}{1+\alpha} \hat{X}_{i-2}^{0}, & i > 0. \end{cases}$$

Соотношение (28) позволяет вычислять значения \tilde{P}_{ij}^{-1} при j > 0. В случае j = 0 можно воспользоваться определением (26).

В частном случае при m = 0 формула для вычисления элементов P_{ij}^{-1} спектральной характеристики P^{-1} записывается в виде

$$P_{ij}^{-1} = \begin{cases} \frac{2}{1+\alpha} \left(\frac{1-\alpha}{1+\alpha}\right)^{k-1} \sqrt{\frac{D(2k-2)!!}{(2k-1)!!}}, & i = 2k-1, \quad j = 0, \\ 0, \quad i = 2k, \quad j = 0, \\ -\frac{2\sqrt{D}}{1-\alpha} \frac{\delta_{ij-1}}{\sqrt{j}} + \frac{2\sqrt{D}}{1-\alpha} \frac{\beta_{ij-1}}{\sqrt{j}} + \frac{1+\alpha}{1-\alpha} P_{ij-2}^{-1} \sqrt{\frac{j-1}{j}}, & j > 0, \end{cases}$$

где

$$\delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j, \end{cases} \quad \beta_{ij} = \begin{cases} \left(-1\right)^s \sqrt{\frac{(2k-1)!!(2s-1)!!}{(2k)!!(2s)!!}} \left(\frac{1-\alpha}{1+\alpha}\right)^k \sqrt{\frac{2}{1+\alpha}}, & i = 2k, \\ 0, & i \neq 2k \end{cases} \quad \text{или} \quad j \neq 2s. \end{cases}$$

Например, при D = 1 и $\alpha = \frac{1}{3}$ имеем

$$P^{-1} = \begin{pmatrix} 0 & \frac{3\sqrt{6}}{2} - 3 & 0 & \frac{\sqrt{6}(3\sqrt{6} - 6)}{3} - \frac{3}{2} & \cdots \\ \frac{3}{2} & 0 & 0 & 0 & \cdots \\ 0 & \frac{3\sqrt{3}}{3} & 0 & \frac{9\sqrt{2}}{8} - \sqrt{3} & \cdots \\ \frac{\sqrt{6}}{4} & 0 & \frac{\sqrt{3}}{2} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Аналогичным образом можно вычислять спектральные характеристики операторов интегрирования, ставящих в соответствие функции f(x) ее первообразную $\int_{a}^{x} f(\xi) d\xi$, где a

- произвольное число, или $\int_{-\infty}^{x} f(\xi) d\xi$. Например, в последнем случае формула (28) при $\alpha \neq 1$ примет вид $\tilde{P}_{ij+1}^{-1} = jD \frac{1+\alpha}{1-\alpha} \tilde{P}_{ij-1}^{-1} - \frac{2D}{1-\alpha} \Delta_{ij}.$ Пример 5. Рассмотрим задачу приближенного представления функции Лапласа $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{\xi^{2}}{2}} d\xi$ в виде ряда по нормированным обобщенным функциям Эрмита.

Для решения этой задачи будем использовать свойства спектрального преобразования операторов интегрирования [6, 15]. Поэтому сначала найдем спектральную характеристику

F функции
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
:
F = $\begin{bmatrix} f_0 & f_1 & f_2 & \dots \end{bmatrix}^{\mathrm{T}}$,

где

$$f_{j} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \omega^{\alpha}(x) e_{j}(x) e^{-\frac{x^{2}}{2}} dx, \quad j = 0, 1, 2, \dots$$

Поскольку рассматривается задача приближенного представления функции, то F – матрица-столбец с конечным числом элементов (j = 0, 1, 2, ..., N-1); для точного представления необходимо вычислять всю совокупность коэффициентов разложения f_i , тогда F будет представлять собой матрицу-столбец с бесконечным числом элементов. Заметим, что для рассматриваемой задачи можно подобрать параметры базисной системы (m, D и α) таким образом, чтобы $f_j = 0$ при j = 1, 2, ...

Спектральная характеристика функции Лапласа $\Phi(x)$ определяется выражением

$$\Phi = P^{-1} \cdot F = \begin{bmatrix} \varphi_0 & \varphi_1 & \varphi_2 & \dots \end{bmatrix}^{\mathrm{T}},$$

где φ_j – коэффициенты разложения этой функции относительно системы нормированных обобщенных функций Эрмита, т.е.

$$\Phi(x) \approx \Phi_N(x) = \sum_{j=0}^{N-1} \varphi_j e_j(x) = \sum_{j=0}^{N-1} \left(\sum_{i=0}^{N-1} P_{ji}^{-1} f_i \right) e_j(x).$$

Здесь, как и в двух предыдущих примерах, предполагается, что спектральные характеристики Φ , P^{-1} и F определены относительно одной и той же системы функций $\{e_j(x)\}_{j=0}^{\infty}$ и имеют одинаковые порядки усечения.

Положим m = 0, $D = \frac{1}{2}$ и найдем функцию $\Phi_N(x)$ при различных N и α . Погрешность аппроксимации функции $\Phi(x)$ функцией $\Phi_N(x)$ будем вычислять только по критерию J_1 (см. (10)), так как функция Лапласа не является элементом пространства $L_2((-\infty, +\infty))$ и, следовательно, вычислять значения критерия J_2 не имеет смысла. Кроме того, нетрудно по-

казать, что $|\Phi(x) - \Phi_N(x)| \rightarrow \frac{1}{2}$ при $x \rightarrow \infty$ и $\alpha \in [0,1)$, $|\Phi(x) - \Phi_N(x)|$ неограниченно возрастает при $x \rightarrow \infty$ и $\alpha = 1$. Результаты расчетов приведены на рис. 21–24 и в таблице 5.

Погрешности аппроксимации функции $\Phi(x)$ при различных α и N

	$\alpha = 0$	$\alpha = \frac{1}{3}$	$\alpha = \frac{1}{2}$	$\alpha = 1$
<i>N</i> = 4	—	0.086656	0.027442	0.007257
N = 8	—	0.020489	0.002870	0.000499
N = 16	—	0.001367	0.000256	0.000004

Не давая подробного вывода, приведем соотношения для расчета элементов спектральной характеристики P^{-n} оператора интегрирования порядка n:

$$P_{ij}^{-n} = \frac{\tilde{P}_{ij}^{-n}}{\sqrt{h_i h_j}}, \quad i, j = 0, 1, 2, ...,$$

где

$$\tilde{P}_{ij+1}^{-n} = \begin{cases} \Delta_{ij}, & n = 0, \\ jD \frac{1+\alpha}{1-\alpha} \tilde{P}_{ij-1}^{-n} + \frac{2D}{1-\alpha} \frac{\tilde{X}_i^{n-1}}{(n-1)!} E_j(0) - \frac{2D}{1-\alpha} \tilde{P}_{ij}^{n-1}, & n > 0 \end{cases}$$

В этом выражении через \tilde{X}_i^n обозначены элементы ненормированной спектральной характеристики функции $f(x) = x^n$, для вычисления которых воспользуемся соотношениями (5), (18) и разложением этой функции по степеням (x-m) (аналогичный прием был использован для получения соотношения (14)):

$$\tilde{X}_i^n = \sum_{k=0}^n C_n^k m^{n-k} \hat{X}_i^k,$$

где

$$\hat{X}_{i}^{n} = \begin{cases} \sqrt{\frac{4\pi D}{1+\alpha}} (2\pi D)^{-\frac{1+\alpha}{4}}, & n = 0, \quad i = 0, \\ \hat{X}_{i+1}^{n-1} + iD\hat{X}_{i-1}^{n-1}, & n > 0, \\ (i-1)D\frac{1-\alpha}{1+\alpha}\hat{X}_{i-2}^{n}, & n = 0, \quad i > 0. \end{cases}$$

Отметим, что спектральная характеристика P^{-n} может быть вычислена по свойству спектрального преобразования композиции линейных операторов:

$$P^{-n} = \underbrace{P^{-1} \cdot P^{-1} \cdots P^{-1}}_{n}.$$

При $\alpha = 1$ для расчета элементов спектральных характеристик операторов интегрирования необходимо использовать соотношения, полученные в [9] для полиномов Эрмита.

Применение обобщенных функций Эрмита

для анализа линейных детерминированных систем управления

Пусть линейная детерминированная система управления описывается укороченным дифференциальным уравнением [4]

$$a_n(x)u^{(n)}(x) + \dots + a_1(x)u'(x) + a_0(x)u(x) = f(x).$$
(30)

Здесь f(x) – входной сигнал, u(x) – выходной сигнал, $a_n(x)$, ..., $a_1(x)$, $a_0(x)$ – заданные функции, x – независимая переменная (время).

Задача анализа состоит в нахождении выходного сигнала u(x) по уравнению системы, заданным входному сигналу f(x) и начальным условиям

$$u(0) = \hat{u}_0, \quad u'(0) = \hat{u}_0', \quad \dots, \quad u^{(n-1)}(0) = \hat{u}_0^{(n-1)}.$$
(31)

Рассмотрим случай нулевых начальных условий: $\hat{u}_0 = \hat{u}'_0 = ... = \hat{u}_0^{(n-1)} = 0$. Согласно алгоритму анализа систем рассматриваемого класса с использованием спектральной формы математического описания [4, 14, 15], спектральная характеристика U выходного сигнала u(x) определяется выражением

$$U = W \cdot F = \begin{bmatrix} u_0 & u_1 & u_2 & \dots \end{bmatrix}^{\mathrm{T}},$$
(32)

в котором F – спектральная характеристика входного сигнала f(x), а W называется двумерной нестационарной передаточной функцией линейной системы (30):

$$W = P^{-n} (A_n + \dots + A_1 P^{-n+1} + A_0 P^{-n})^{-1},$$
(33)

где P^{-1} , ..., P^{-n+1} , P^{-n} – спектральные характеристики операторов интегрирования, а A_n , ..., A_1 , A_0 – спектральные характеристики операторов умножения на функции $a_n(x)$, ..., $a_1(x)$, $a_0(x)$ соответственно. Все перечисленные спектральные характеристики определены относительно одной и той же базисной системы.

В более общем случае при ненулевых начальных условиях и правой части уравнения (30) вида $b_m(x)f^{(m)}(x) + ... + b_1(x)f'(x) + b_0(x)f(x)$, где $b_m(x)$, ..., $b_1(x)$, $b_0(x)$ – заданные функции, алгоритм решения задачи анализа незначительно модифицируется [4, 14]. Кроме того, выражение (33) для матрицы W можно записать с использованием спектральных характеристик операторов дифференцирования \mathcal{P} , \mathcal{P}^2 , ..., \mathcal{P}^n .

Выходной сигнал определяется коэффициентами разложения u_j (при усечении спектральных характеристик выходной сигнал определяется приближенно).

Пример 6. Рассмотрим задачу анализа линейной системы, которая описывается дифференциальным уравнением первого порядка

$$u'(x) + 2xu(x) = f(x)$$
 (34)

при нулевом начальном условии и входном сигнале $f(x) = (1+2x)e^{-(x-1)^2}$.

Запишем выражение для спектральной характеристики входного сигнала:

$$F = \begin{bmatrix} f_0 & f_1 & f_2 & \dots \end{bmatrix}^{\mathrm{T}},$$
(35)

где f_j вычисляются по формуле (7) (см. также примеры 1 и 2):

$$f_{j} = \int_{-\infty}^{+\infty} \omega^{\alpha}(x) e_{j}(x) (2x+1) e^{-(x-1)^{2}} dx.$$

Двумерная нестационарная передаточная функция линейной системы (34) имеет вид $W = P^{-1}(A_1 + A_0P^{-1})^{-1}$, где P^{-1} – спектральная характеристика оператора интегрирования, а A_1 и A_0 – спектральные характеристики операторов умножения на функции $a_1(x) = 1$ и $a_0(x) = 2x$ соответственно (формулы для определения этих характеристик были получены в предыдущих разделах). Тогда спектральная характеристика U выходного сигнала u(x) определяется формулой (32), а приближенное решение задачи анализа – соотношением

$$u(x) \approx u_N(x) = \sum_{j=0}^{N-1} u_j e_j(x) = \sum_{j=0}^{N-1} \left(\sum_{i=0}^{N-1} W_{ji} f_i \right) e_j(x).$$
(36)

Пусть m = 0 и $D = \frac{1}{2}$. Найдем функцию $u_N(x)$ при различных значениях N и α . Для вычисления погрешности аппроксимации точного решения $u(x) = x e^{-(x-1)^2}$ этой задачи функцией $u_N(x)$ снова воспользуемся критериями (10). Результаты расчетов приведены на рис. 25–28 и в таблице 6.

Пример 7. Рассмотрим задачу анализа линейной системы, которая описывается дифференциальным уравнением второго порядка

$$u''(x) + 5u'(x) + x^2u(x) = f(x)$$
(37)

при нулевых начальных условиях и входном сигнале

$$f(x) = (2+34x+56x^2-34x^3+5x^4)e^{-(x-3)^2}$$

Спектральная характеристика F входного сигнала имеет вид (35),

$$f_j = \int_{-\infty}^{+\infty} \omega^{\alpha}(x) e_j(x) \left(2 + 34x + 56x^2 - 34x^3 + 5x^4\right) e^{-(x-3)^2} dx.$$

Двумерная нестационарная передаточная функция линейной системы (37) имеет вид $W = P^{-2}(A_2 + A_1P^{-1} + A_0P^{-2})^{-1}$, где P^{-1} и P^{-2} – спектральные характеристики операторов интегрирования, а A_2 , A_1 и A_0 – спектральные характеристики операторов умножения на функции $a_2(x) = 1$, $a_1(x) = 5$ и $a_0(x) = x^2$ соответственно. Тогда спектральная характеристика U выходного сигнала u(x) определяется формулой (32), а приближенное решение задачи анализа – формулой (36).

Для численных расчетов положим m = 0, $D = \frac{1}{2}$ и найдем функцию $u_N(x)$ при различных N и α . Как и в предыдущем примере, для сравнения точного решения $u(x) = x^2 e^{-(x-3)^2}$ с приближенным $u_N(x)$ воспользуемся критериями (10). Результаты расчетов приведены на рис. 29–33 и в таблице 7.

Таблица 6

Погрешности аппроксимации функции u(x) при различных α и N

				•
	$\alpha = 0$	$\alpha = \frac{1}{3}$	$\alpha = \frac{1}{2}$	$\alpha = 1$
	0.184154/	0.185695/	0.173356/	0.129453/
N = 4	0.184154/	0.439261/	0.684324/	_/
	0.140936	0.380945	0.561502	—
	0.024572/	0.020586/	0.021749/	0.029753/
<i>N</i> = 8	0.024572/	0.163116/	0.908985/	_/
	0.014162	0.108612	0.674379	_
	0.000201/	0.000903/	0.001232/	0.001913/
N = 16	0.000201/	0.070455/	2.012274/	_/
	0.000129	0.058812	1.368706	—

Таблица 7

	$\alpha = 0$	$\alpha = \frac{1}{3}$	$\alpha = \frac{1}{2}$	$\alpha = 1$
	11.433448/	1.772601/	0.800821/	0.102026/
N = 4	11.433448/	9.719691/	9.235354/	_/
	9.335652	9.016805	8.616566	—
N = 8	4.778131/	0.214363/	0.130685/	0.049863/
	4.778131/	2.226259/	7.122929/	_/
	3.640763	1.620364	5.856277	—
N =16	0.679364/	0.023754/	0.017701/	0.050535/
	0.679364/	1.243321/	15.852191/	_/
	0.524929	1.134365	13.071323	_

Погрешности аппроксимации функции u(x) при различных α и N

Заключение

В результате проведенного исследования разработаны алгоритмы расчета спектральных характеристик операторов умножения, дифференцирования и интегрирования (двумерных нестационарных передаточных функций элементарных звеньев систем управления: усилительного, дифференцирующего и интегрирующего) в базисе обобщенных функций Эрмита для применения к решению задач анализа и синтеза линейных и нелинейных систем управления в спектральной форме математического описания. Разработанные алгоритмы расчета спектральных характеристик апробированы на ряде примеров представления функций, их производных и первообразных, рассмотрены примеры анализа линейных нестационарных детерминированных систем управления первого и второго порядков.

Работа выполнена в рамках аналитической ведомственной целевой программы «Развитие научного потенциала высшей школы 2009–2010 гг.; проект 2.1.1/2904». Название проекта: Перспективные методы в современных задачах управления, оценивания и классификации.

Библиографический список

- Антосик П., Микусинский Я., Сикорский Р. Теория обобщенных функций. Секвенциальный подход. М.: Мир, 1976. 312 с.
- Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1976. – 544 с.
- Кук Р. Бесконечные матрицы и пространства последовательностей. М.: Физматгиз, 1960. – 471 с.
- 4. Пантелеев А.В., Бортаковский А.С. Теория управления в примерах и задачах. М.: Высшая школа, 2003. – 583 с.
- 5. Пантелеев А.В., Руденко Е.А., Бортаковский А.С. Нелинейные системы управления: описание, анализ и синтез. – М.: Вузовская книга, 2008. – 312 с.
- 6. Пантелеев А.В., Рыбаков К.А., Сотскова И.Л. Спектральный метод анализа нелинейных стохастических систем управления. М.: Вузовская книга, 2006. 392 с.
- Парлетт Б. Симметричная проблема собственных значений. Численные методы. М.: Мир, 1983. – 384 с.
- Рыбаков К.А. Спектральный метод синтеза оптимальных систем управления со случайной структурой // Тез. докл. 2-й Всероссийской научной конф. «Математическое моделирование и краевые задачи». – Самара: СамГТУ, 2005. – С. 219–221.

- Рыбаков К.А., Сотскова И.Л. Алгоритмическое обеспечение спектрального метода анализа систем управления в неограниченных областях изменения времени и фазовых координат // Электронный журнал «Труды МАИ». – 2004. № 16. – http://www.mai.ru.
- Рыбаков К.А., Сотскова И.Л., Юдин М.А. Синтез алгоритмов оптимального управления малым искусственным спутником с учетом возможного отказа управляющего устройства // Теоретические вопросы вычислительной техники и программного обеспечения: Межвуз. сб. науч. тр. – М.: МИРЭА, 2006. – С. 98–103.
- 11. Рыбаков К.А., Хакимов З.Р. Применение спектральной формы математического описания к решению линейных интегральных уравнений // Тез. докл. 2-й Всероссийской конф. ученых, молодых специалистов и студентов «Информационные технологии в авиационной и космической технике – 2009». – М.: Изд-во МАИ-ПРИНТ, 2009. – С. 90.
- 12. Рыбаков К.А., Хакимов З.Р. Анализ систем управления со случайным периодом квантования в классе обобщенных характеристических функций // Тез. докл. 8-й Межд. конф. «Авиация и космонавтика – 2009». – М.: Изд-во МАИ-ПРИНТ, 2009. – С. 72.
- Рыбин В.В. Описание сигналов и линейных нестационарных систем управления в базисах вейвлетов и их анализ в вычислительных средах. – М.: Изд-во МАИ, 2003. – 96 с.
- Семенов В.В., Рыбин В.В. Алгоритмическое и программное обеспечение расчета нестационарных непрерывно-дискретных систем управления ЛА спектральным методом. – М.: МАИ, 1984. – 84 с.
- Солодовников В.В., Семенов В.В. Спектральная теория нестационарных систем управления. – М.: Наука, 1974. – 336 с.
- 16. Суетин П.К. Классические ортогональные многочлены. М.: Наука, 1979. 416 с.

Сведения об авторах

Романов Владимир Андреевич; студент; Московский авиационный институт (государственный технический университет); e-mail: <u>zazou@yandex.ru</u>

Рыбаков Константин Александрович; доцент; к.ф.-м.н.; Московский авиационный институт (государственный технический университет); e-mail: <u>rkoffice@mail.ru</u>