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Spectral Method for Analysis
of Switching Diffusions

K. A. Rybakov and I. L. Sotskova

Abstract—The analysis problem of switching diffusions is considered.
This paper presents a new approach based on the spectral method
formalism for solving generalized Fokker-Planck equations. The proposed
method allows to transform partial differential equations into the linear
algebraic equations, and to arrive at a solution in an explicit form. The
aspects of applications are discussed. A numerical example is given to
illustrate the efficiency of the proposed method.

Index Terms—Switching diffusions, generalized Fokker-Planck equa-
tions, spectral method, spectral transform.

I. INTRODUCTION

We consider models of complicated control systems that arise
in numerous applications such as navigation and flight control of
an aircraft [1], pancake landing in the turbulent atmosphere [2],
fault-tolerant control systems [3], flexible manufacturing systems [4],
Markowitz’s mean-variance portfolio selection with regime switching
[5], etc.

The system state is given by a pair (X(t),K(t)) ∈ R
n ×

{1, 2, . . . , N}, where X and K are continuous and discrete compo-
nents, respectively; t ∈ T , T = [t0, t1]. The evolution of the process
(X(t),K(t)) is described by the following equations:

dX(t) = f(t, X(t),K(t))dt

+ σ(t,X(t),K(t))dW (t), X(t0) = X0, (1)

P(K(t+Δt) = r | K(t) = k,X(t) = x)

= λkr(t, x)Δt+ o(Δt), K(t0) = K0, (2)

where f〈k〉(t, x) = f(t, x, k) : T × R
n → R

n is an n-dimensional
continuous function, σ〈k〉(t, x) = σ(t, x, k) : T × R

n → R
n×s is

an (n× s)-dimensional continuous function, λkr(t, x) : T × R
n →

[0,+∞) is a continuous intensity function, W (t) is an s-dimensional
Wiener process independent of X0 and K0; k, r = 1, 2, . . . , N ,
k �= r.

Assumption 1.1:
(i) There exists C1, C2 > 0 such that |f〈k〉(t, x)|+‖σ〈k〉(t, x)‖ <

C1(1 + |x|), |f 〈k〉(t, x) − f 〈k〉(t, y)|+ ‖σ〈k〉(t, x)− σ〈k〉(t, y)‖+
‖λ(t, x) − λ(t, y)‖ < C2|x − y| for any t ∈ T , x, y ∈ R

n, k =
1, 2, . . . , N . Here λ(t, x) is the (N ×N)-dimensional function with
entries λkr(t, x) (λkk(t, x) ≡ 0).

(ii) E[|X0|2] < ∞ (E[ · ] is the expectation).
For any t ∈ T the most comprehensive statistical characteris-

tic of a pair (X(t),K(t)) is the function φ(t, x, k) : T × R
n ×

{1, 2, . . . , N} → [0,+∞), where φ〈k〉(t, x) = φ(t, x, k) : T ×
R

n → [0,+∞) is the nonnormalized probability density of X(t)
when K(t) = k; k = 1, 2, . . . , N . Thus, P〈k〉(t) =

∫
Rn φ〈k〉(t, x)dx

is the probability that K(t) = k, ϕ(t, x) =
∑N

k=1 φ
〈k〉(t, x) is the

probability density of X(t), and φ̃〈k〉(t, x) = [P〈k〉(t)]−1φ〈k〉(t, x)
is the conditional probability density of X(t) when K(t) = k. It
is known that if φ〈1〉(t, x), . . . , φ〈N〉(t, x) exist then they satisfy
generalized Fokker-Planck equations [1], [3], [6], [7]:

∂φ〈k〉(t, x)
∂t

= −
n∑

i=1

∂

∂xi

[
f
〈k〉
i (t, x)φ〈k〉(t, x)

]
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n∑
i,j=1

∂2

∂xi∂xj

[
g
〈k〉
ij (t, x)φ〈k〉(t, x)

]

−
N∑

r=1,r �=k

λkr(t, x)φ
〈k〉(t, x) +

N∑
r=1,r �=k

λrk(t, x)φ
〈r〉(t, x), (3)

φ〈k〉(t0, x) = φ
〈k〉
0 (x), φ〈k〉(t, x)

∣∣∣
x=±∞

= 0, k = 1, 2, . . . , N.

Here g〈k〉(t, x) = σ〈k〉(t, x)[σ〈k〉(t, x)]′ : T × R
n → R

n×n is the
diffusion matrix ([ · ]′ denotes the transpose), φ

〈k〉
0 (x) is the given

nonnormalized probability density of X0 when K0 = k, i.e.,

φ
〈k〉
0 (x) = φ(t0, x, k),

N∑
k=1

∫
Rn

φ
〈k〉
0 (x)dx = 1.

So, the analysis problem of switching diffusions (1), (2) is formu-
lated as follows: Given functions f〈k〉(t, x) and σ〈k〉(t, x) defining
Itô equation (1), intensities λkr(t, x) characterizing the process
K(t), and nonnormalized probability densities φ

〈k〉
0 (x) of X0, find

nonnormalized probability densities φ〈k〉(t, x); k, r = 1, 2, . . . , N ,
k �= r.

Remark 1.1: The condition (i) of Assumption 1.1 can be weakened
[1], [8], [9].

Assumption 1.2:
(i) There exists the probability density ϕ(t, x) (there exists

φ〈k〉(t, x), k = 1, 2, . . . , N ).
(ii) φ〈k〉(t, x), ϕ(t, x) ∈ L2(T × R

n); φ〈k〉
0 (x) ∈ L2(R

n);
(iii) For any ξ(t, x) ∈ C∞

0 (T × R
n) the following equations are

satisfied (k = 1, 2, . . . , N ):∫
T

∫
Rn

ξ(t, x)
∂φ〈k〉(t, x)

∂t
dxdt

=

n∑
i=1

∫
T

∫
Rn

∂ξ(t, x)

∂xi
f
〈k〉
i (t, x)φ〈k〉(t, x)dxdt

+
1

2

n∑
i,j=1

∫
T

∫
Rn

∂2ξ(t, x)

∂xi∂xj
g
〈k〉
ij (t, x)φ〈k〉(t, x)dxdt

−
N∑

r=1,r �=k

∫
T

∫
Rn

ξ(t, x)λkr(t, x)φ
〈k〉(t, x)dxdt

+

N∑
r=1,r �=k

∫
T

∫
Rn

ξ(t, x)λrk(t, x)φ
〈r〉(t, x)dxdt,

where C∞
0 (T × R

n) consists of functions that have the compact
support and continuous derivatives of all orders.

Methods for a solution of generalized Fokker-Planck equations
are similar to methods for a solution of the classical Fokker-Planck
equation [10], [11], and therefore they have the same advantages and
imperfections. The simplest method is the Gaussian approximation;
however, it is the least accurate, since this method does not give
the exact solution even for the linear control systems in contrast to
stochastic systems without regime switching.

Methods based on the representation of the probability density by
series on orthogonal functions have obtained the basic distribution
[1]. These methods allow to pass from generalized Fokker-Planck
equations to a large order system of ordinary differential equations,
but its solving demands the significant time expenses. The numerical
solving generalized Fokker-Planck equations by using the methods
developed for the classical Fokker-Planck equation and the Monte
Carlo method underlie other approaches to the analysis problem [12].
The detailed description of different methods for solving generalized
Fokker-Planck equations is given in [1].

A new approach based on the spectral method formalism [13], [14],
[15] to solve the analysis problem of switching diffusions is given
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in this paper. The proposed method allows to transform generalized
Fokker-Planck equations into the linear algebraic equations, and to
arrive at a solution in an explicit form.

II. PRELIMINARY RESULTS

Assume that n1 = n+1. Let {qi0(t)}∞i0=0 be an orthonormal basis
of L2(T ) and let {pi1...in(x)}∞i1,...,in=0 be an orthonormal basis of
L2(R

n), then {ei0...in(t, x)}∞i0,...,in=0 is the orthonormal basis of
L2(T × R

n), where ei0...in(t, x) = qi0 (t)pi1...in(x).
Definition 2.1: An infinite n1-dimensional matrix H(n1, 0) =

[hi0...in ] is called the spectral characteristic of a function h(t, x) ∈
L2(T × R

n) if hi0...in = (ei0...in(t, x), h(t, x))L2(T×Rn).
Thus, H(n1, 0) = S [h(t, x)] if and only if

hi0...in =

∫
T

∫
Rn

ei0...in (t, x)h(t, x)dxdt, i0, . . . , in = 0, 1, 2, . . . ,

then

h(t, x) = S
−1 [H(n1, 0)]

=

∞∑
i0,...,in=0

hi0...inei0...in(t, x), (t, x) ∈ T × R
n, (4)

where S and S
−1 denote the spectral transform and the spectral

inversion, respectively.
Similarly, the spectral characteristic of a function h(x) ∈ L2(R

n)
may be defined.

Definition 2.2: An infinite n-dimensional matrix H(n, 0) =
[hi1...in ] is called the spectral characteristic of a function h(x) ∈
L2(R

n) if

hi1...in = (pi1...in(x), h(x))L2(Rn)

=

∫
Rn

pi1...in(x)h(x)dx, i1, . . . , in = 0, 1, 2, . . . .

Definition 2.3: An infinite 2n1-dimensional matrix A(n1, n1) =
[ai0...inj0...jn ] is said to be the spectral characteristic of a linear
operator A : DA ⊆ L2(T × R

n) → L2(T × R
n) if

ai0...inj0...jn = (ei0...in(t, x),Aej0...jn(t, x))L2(T×Rn)

=

∫
T

∫
Rn

ei0...in(t, x)Aej0...jn(t, x)dxdt,

i0, . . . , in, j0, . . . , jn = 0, 1, 2, . . . .

Before proceeding further, we present some preliminary results
with regard to properties of the spectral characteristics (multidimen-
sional matrix operations are described in Appendix).

Proposition 2.1: For any hl(t, x) ∈ L2(T × R
n) and γl ∈ R (l =

1, 2, . . . , L) the following equation is satisfied:

S

[
L∑

l=1

γlhl(t, x)

]
=

L∑
l=1

γl S [hl(t, x)].

Proof: This follows from scalar product properties.
Theorem 2.1: Let h(t, x) ∈ L2(T × R

n) be a function such that
h(t∗, x) = h∗(x) ∈ L2(R

n), and let q(1, 0; t∗) be the infinite
column vector with entries qi0(t

∗), i.e., q(1, 0; t∗) = [q0(t
∗), q1(t∗),

q2(t
∗), . . .]′; t∗ ∈ T . Denote the spectral characteristic of h∗(x) by

H∗(n, 0). Then ([q(1, 0; t∗)]′ ⊗ E(n, n)) · H(n1, 0) = H∗(n, 0),
where E(n, n) is the 2n-dimensional identity matrix.

Proof: For almost all x ∈ R
n the function h(t, x) can be

represented in the form

h(t, x) =
∞∑

i0=0

hi0(x)qi0(t),

where hi0(x) = (qi0(t), h(t, x))L2(T ) =
∫
T
qi0(t)h(t, x)dt.

Due to Definition 2.2 the entries of H∗(n, 0) are defined by
h∗
i1...in = (pi1...in(x), h

∗(x))L2(Rn), and therefore

h∗
i1...in =

(
pi1...in(x),

∞∑
i0=0

hi0(x)qi0(t
∗)

)
L2(Rn)

=
∞∑

i0=0

qi0(t
∗)(pi1...in(x), hi0(x))L2(Rn) =

∞∑
i0=0

qi0(t
∗)hi0...in ,

where hi0...in are entries of the spectral characteristic of h(t, x).
Let Q∗(n, n1) = [q(1, 0; t∗)]′ ⊗E(n, n) be the infinite (n+n1)-

dimensional matrix with entries defined by

q∗i1...inj0...jn =

{
qj0 (t

∗), i1 = j1, . . . , in = jn,
0, otherwise,

then

h∗
i1...in =

∞∑
j0,...,jn=0

q∗i1...inj0...jnhj0...jn .

This implies that Q∗(n, n1) ·H(n1, 0) = H∗(n, 0). Thus, we obtain
the desired result.

Theorem 2.2: Suppose that A : DA ⊆ L2(T × R
n) →

L2(T × R
n) is a linear operator, and h(t, x) ∈ DA. Let A(n1, n1)

be the spectral characteristic of A. Then S [Ah(t, x)] = A(n1, n1) ·
S [h(t, x)].

Proof: Assume that w(t, x) = Ah(t, x). Then, using (4), we
have

w(t, x) = A
[ ∞∑

i0,...,in=0

hi0...inei0...in(t, x)

]

=
∞∑

i0,...,in=0

hi0...inAei0...in(t, x),

where hi0...in are defined by Definition 2.1.
Let W (n1, 0) = [wi0...in ] be the spectral characteristic of w(t, x),

consequently,

wi0...in = (ei0...in(t, x), w(t, x))L2(T×Rn)

=

(
ei0...in(t, x),

∞∑
j0,...,jn=0

hj0...jnAej0...jn (t, x)

)
L2(T×Rn)

=
∞∑

j0,...,jn=0

(ei0...in(t, x),Aej0...jn(t, x))L2(T×Rn)hj0...jn

=

∞∑
j0,...,jn=0

ai0...inj0...jnhj0...jn ,

where ai0...inj0...jn are entries of A(n1, n1) due to Definition 2.3.
Therefore W (n1, 0) = S [Ah(t, x)] = A(n1, n1) · S [h(t, x)].

Theorem 2.3: Suppose that A : DA ⊆ L2(T × R
n) →

L2(T × R
n) and B : DB ⊆ L2(T × R

n) → RB ⊆ L2(T × R
n)

are linear operators, RB ⊆ DA; C = A ◦ B is a composi-
tion of A and B. Denote spectral characteristics of A, B, and
C by A(n1, n1), B(n1, n1), and C(n1, n1), respectively. Then
C(n1, n1) = A(n1, n1) · B(n1, n1).

Proof: Let h(t, x) ∈ DB. By virtue of Theorem 2.2,
S [Ch(t, x)] = C(n1, n1) · S [h(t, x)]. On the other hand,
S [Ch(t, x)] = S [A[Bh(t, x)]] = A(n1, n1) · S [Bh(t, x)] =
A(n1, n1) · B(n1, n1) · S [h(t, x)]. This implies that C(n1, n1) =
A(n1, n1) · B(n1, n1), since h(t, x) was arbitrary.

Remark 2.1: Spectral characteristics with a similar properties can
be defined for elements, which do not belong to L2(T × R

n) (for
instance, for elements of Lp(T × R

n), where p < 2) and for
distributions [15], [16].
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III. SPECTRAL METHOD FOR SOLVING GENERALIZED

FOKKER-PLANCK EQUATIONS

Apply the spectral transform to left-hand and right-hand sides of
(3) by using the linearity (see Proposition 2.1) and remark 2.1. Then

S

[
∂φ〈k〉(t, x)

∂t

]
= −

n∑
i=1

S

[
∂

∂xi

[
f
〈k〉
i (t, x)φ〈k〉(t, x)

]]

+
1

2

n∑
i,j=1

S

[
∂2

∂xi∂xj

[
g
〈k〉
ij (t, x)φ〈k〉(t, x)

]]

−
N∑

r=1,r �=k

S

[
λkr(t, x)φ

〈k〉(t, x)
]

+

N∑
r=1,r �=k

S

[
λrk(t, x)φ

〈r〉(t, x)
]
. (5)

We will use the following notations (i, j = 1, 2, . . . , n; k, r =
1, 2, . . . , N ; k �= r):

(i) P(n1, n1) is the spectral characteristic of the differentiation
operator ∂/∂t;

(ii) Pi(n1, n1) and Pij(n1, n1) are spectral characteristics of the
differentiation operators ∂/∂xi and ∂2/∂xi∂xj , respectively;

(iii) F
〈k〉
i (n1, n1), G

〈k〉
ij (n1, n1), and Λkr(n1, n1) are spectral

characteristics of the multiplication operators with multipliers
f
〈k〉
i (t, x), g〈k〉ij (t, x), and λkr(t, x), respectively.

Remark 3.1: The analytic expressions for spectral characteristics
of the differential and multiplication operators for different orthonor-
mal bases such as Legendre polynomials, Fourier basis, Walsh and
Haar functions, Hermite functions are given in [13], [15].

Proposition 3.1: Let Φ〈k〉(n1, 0) and Φ
〈k〉
0 (n, 0) be spectral char-

acteristics of the nonnormalized probability densities φ〈k〉(t, x) and
φ
〈k〉
0 (x), respectively; k = 1, 2, . . . , N . Then

(i) S

[
∂φ〈k〉(t,x)

∂t

]
= P (n1, n1) · Φ〈k〉(n1, 0) − q(1, 0; t0) ⊗

Φ
〈k〉
0 (n, 0), where P (n1, n1) = P(n1, n1) + (q(1, 0; t0) ·

[q(1, 0; t0)]
′)⊗ E(n, n);

(ii) S

[
∂

∂xi

[
f
〈k〉
i (t, x)φ〈k〉(t, x)

]]
= Pi(n1, n1) · F 〈k〉

i (n1, n1) ·
Φ〈k〉(n1, 0);

(iii) S

[
∂2

∂xi∂xj

[
g
〈k〉
ij (t, x)φ〈k〉(t, x)

]]
= Pij(n1, n1) ·

G
〈k〉
ij (n1, n1) · Φ〈k〉(n1, 0);

(iv) S

[
λkr(t, x)φ

〈k〉(t, x)
]
= Λkr(n1, n1) · Φ〈k〉(n1, 0);

for each i, j = 1, 2, . . . , n and k, r = 1, 2, . . . , N , k �= r.
Proof: It is clear from Theorem 2.2 that

S

[
∂φ〈k〉(t, x)

∂t

]
= P(n1, n1) · Φ〈k〉(n1, 0).

Representing the spectral characteristic P(n1, n1) as P(n1, n1) =
P (n1, n1) − (q(1, 0; t0) · [q(1, 0; t0)]′) ⊗ E(n, n) and using Theo-
rem 2.1, we obtain that P(n1, n1) · Φ〈k〉(n1, 0) = (P (n1, n1) −
(q(1, 0; t0) · [q(1, 0; t0)]′) ⊗ E(n, n)) · Φ〈k〉(n1, 0) = P (n1, n1) ·
Φ〈k〉(n1, 0) − (q(1, 0; t0) ⊗ E(n, n)) · ([q(1, 0; t0)]′ ⊗ E(n, n)) ·
Φ〈k〉(n1, 0) = P (n1, n1) · Φ〈k〉(n1, 0) − (q(1, 0; t0) ⊗ E(n, n)) ·
Φ

〈k〉
0 (n, 0) = P (n1, n1) · Φ〈k〉(n1, 0) − q(1, 0; t0)⊗Φ

〈k〉
0 (n, 0).

The proof of (ii)–(iv) follows from Theorems 2.2 and 2.3.
By virtue of Proposition 3.1, equations (5) can be rewritten in the

form

P (n1, n1) · Φ〈k〉(n1, 0)− q(1, 0; t0)⊗ Φ
〈k〉
0 (n, 0)

= −
n∑

i=1

Pi(n1, n1) · F 〈k〉
i (n1, n1) · Φ〈k〉(n1, 0)

+
1

2

n∑
i,j=1

Pij(n1, n1) ·G〈k〉
ij (n1, n1) · Φ〈k〉(n1, 0)

−
N∑

r=1,r �=k

Λkr(n1, n1) · Φ〈k〉(n1, 0)

+
N∑

r=1,r �=k

Λrk(n1, n1) · Φ〈r〉(n1, 0), k = 1, 2, . . . , N,

consequently, spectral characteristics Φ〈1〉(n1, 0), . . . , Φ〈N〉(n1, 0)
satisfy the following system of equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P (n1, n1) · Φ〈1〉(n1, 0)− A11(n1, n1) · Φ〈1〉(n1, 0)− . . .

−A1N(n1, n1) · Φ〈N〉(n1, 0) = q(1, 0; t0)⊗ Φ
〈1〉
0 (n, 0),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P (n1, n1) · Φ〈N〉(n1, 0)− AN1(n1, n1) · Φ〈1〉(n1, 0) − . . .

−ANN (n1, n1) · Φ〈N〉(n1, 0) = q(1, 0; t0)⊗ Φ
〈N〉
0 (n, 0),

(6)
where

Akk(n1, n1) = −
n∑

i=1

Pi(n1, n1) · F 〈k〉
i (n1, n1)

+
1

2

n∑
i,j=1

Pij(n1, n1) ·G〈k〉
ij (n1, n1)−

N∑
r=1,r �=k

Λkr(n1, n1),

Akr(n1, n1) = Λrk(n1, n1), k, r = 1, 2, . . . , N, k �= r.

Thus, the analysis problem of switching diffusions (1), (2) is
reduced to solving the infinite system of the linear algebraic equations
(6) with the unknown entries of spectral characteristic Φ〈1〉(n1, 0),
. . . , Φ〈N〉(n1, 0). The aspects of solving the infinite system of the
linear algebraic equations are given in [17].

Let n2 = n + 2 and Z(n2, n2) be the 2n2-dimensional matrix
such that

Z(n2, n2)

=

⎡
⎢⎣
P (n1, n1)− A11(n1, n1) . . . −A1N(n1, n1)

...
. . .

...
−AN1(n1, n1) . . . P (n1, n1)− ANN (n1, n1)

⎤
⎥⎦ ,

and let Φ(n2, 0) and B(n2, 0) be n2-dimensional matrices such that

Φ(n2, 0) =

⎡
⎢⎣
Φ〈1〉(n1, 0)

...
Φ〈N〉(n1, 0)

⎤
⎥⎦ ,

B(n2, 0) =

⎡
⎢⎢⎣
q(1, 0; t0)⊗ Φ

〈1〉
0 (n, 0)

...
q(1, 0; t0)⊗ Φ

〈N〉
0 (n, 0)

⎤
⎥⎥⎦ ,

then (6) takes the following form:

Z(n2, n2) · Φ(n2, 0) = B(n2, 0), (7)

and therefore Φ(n2, 0) = Z−1(n2, n2) ·B(n2, 0).
Remark 3.2: Matrices P (n1, n1) and Akr(n1, n1) are infinite

2n1-dimensional matrices, k, r = 1, 2, . . . , N ; however, the
2n2-dimensional matrix Z(n2, n2) = [zαi0...inβj0...jn ] and n2-
dimensional matrices Φ(n2, 0) = [φαi0...in ] and B(n2, 0) =
[bαi0...in ] are such that i0, . . . , in, j0, . . . , jn = 0, 1, 2, . . . and
α, β = 1, 2, . . . , N . In order to determine Z(n2, n2), Φ(n2, 0), and
B(n2, 0) it is necessary to use the matrix aggregation [13].

Spectral characteristics Φ〈k〉(n1, 0) can be derived from Φ(n2, 0)
by the matrix decomposition [13], where Φ(n2, 0) satisfies (7). Then,
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the nonnormalized probability density φ〈k〉(t, x) is given by (4):

φ〈k〉(t, x) = S
−1
[
Φ〈k〉(n1, 0)

]
=

∞∑
i0,...,in=0

φ
〈k〉
i0...in

ei0...in (t, x), (t, x) ∈ T × R
n,

where φ
〈k〉
i0...in

are entries of Φ〈k〉(n1, 0); k = 1, 2, . . . , N .
Remark 3.3: To find an approximate solution of the analysis

problem of switching diffusions all spectral characteristics must be
truncated on all dimensions that allow the infinite values of indexes
(see Remark 3.2). The methodical inaccuracy caused by the spectral
characteristic truncation is described in [14], [15].

IV. ANALYSIS OF THE SATELLITE STABILIZATION

Consider a stabilization problem of the pico-satellite [18]. Suppose
that the satellite dynamics in the orbital plane can be defined by the
following linearized equations:

dX1(t) = X2(t)dt,

X1(0) = X10,

dX2(t) = (−X1(t) + (2−K(t))u(t))dt+ 0.1dW (t),

X2(0) = X20,

where X1 is the deflection angle of the gravity gradient boom, X2

is the angular velocity of the self-rotation, t ∈ T = [0, 1], W (t) is a
one-dimensional Wiener process, X10 and X20 are independent ran-
dom variables. Thus, n = 2, N = 2 (K ∈ {1, 2}); f〈k〉(t, x1, x2) =
[x2,−x1 + (2− k)u(t)]′, σ〈k〉(t, x1, x2) = [0, 0.1]′; k = 1, 2.
Consequently, this control system can work in two regimes: normal
regime (k = 1) and control fault (k = 2).

Let φ
〈1〉
0 (x1, x2) = 1

2π
exp

(− 1
2

(
[x1 + 0.3]2 + [x2 − 0.1]2

))
and φ

〈2〉
0 (x1, x2) = 0 are nonnormalized probability densities of

[X10, X20]
′, i.e., P〈1〉(0) = 1, P〈2〉(0) = 0, E[X10] = −0.3,

E[X20] = 0.1.
The control process u(t) = −0.2(1 − tan 1 − 2 tan2 1) cos t −

0.2(3 + 3 tan 1 + 2 tan2 1) sin t guarantees that E[X1(1)] =
E[X2(1)] = 0 if λ12(t, x1, x2) = λ21(t, x1, x2) = 0 (there is no
regime switching).

It is necessary to find nonnormalized probability densities
φ〈1〉(t, x1, x2), φ〈2〉(t, x1, x2), probabilities P〈1〉(t), P〈2〉(t), and
expectations m1(t) = E[X1(t)], m2(t) = E[X2(t)], when
λ12(t, x1, x2) = 0.2, λ21(t, x1, x2) = 0.1. Hence the process K(t)
is the continuous time Markov chain with generator [4]:[−0.2 0.2

0.1 −0.1

]
.

Let {qi0 (t) = P̂i0(t)}∞i0=0 and {pi1i2(x1, x2) =

Ĥi1(x1) Ĥi2(x2)}∞i1,i2=0 be the orthonormal bases, where
{P̂i0(t)}∞i0=0 is the orthonormal Legendre polynomials,
{Ĥil(xl)}∞il=0 is the orthonormal Hermite functions; l = 1, 2.
The approximate solution of the analysis problem is presented on
Fig. 1 (see Remark 3.3; i0, i1, i2 = 0, 1, . . . , 7).

It is known that functions P〈k〉(t) and mi(t) (k = 1, 2, i = 1, 2)
are formally defined as

P〈k〉(t) =
∫
R2

φ〈k〉(t, x1, x2)dx1dx2,

mi(t) =

∫
R2

xi[φ
〈1〉(t, x1, x2) + φ〈2〉(t, x1, x2)]dx1dx2. (8)

Moreover, these functions can be found by the two-moment paramet-
ric approximation [1]. Then

P〈1〉(t) =
1

3
+

2

3
e−0.3t, P〈2〉(t) =

2

3
− 2

3
e−0.3t,

m1(t) = (0.5 + 0.18t − 1.58e−0.3t) sin t

+ (2.25 + 0.42t − 2.55e−0.3t) cos t,

m2(t) = (−2.07− 0.42t + 3.02e−0.3t) sin t

+ (0.92 + 0.18t − 0.82e−0.3t) cos t. (9)

The graphs of probabilities P〈1〉(t), P〈2〉(t) and expectations
m1(t), m2(t) are presented on Fig. 2 and 3, respectively. The exact
solutions (9) are shown by dot lines, and the approximate solutions
defined as in (8) are shown by solid lines. The satellite stabilization
error is evaluated as E[X1(1)] ≈ 0.007, E[X2(1)] ≈ 0.06.

In this case Δ[P〈1〉] ≈ 0.007337, Δ[P〈2〉] ≈ 0.001039, Δ[m1] ≈
0.005693, Δ[m2] ≈ 0.008628, where Δ[P〈k〉] = ‖P〈k〉

exact(t) −
P

〈k〉
approximate(t)‖L2(T ) (the definition of Δ[mi] is similar). It is

seen that the spectral method is sufficiently effective; however,
the accuracy can be increased. For example, if i0 = 0, 1, . . . , 7
and i1, i2 = 0, 1, . . . , 11 then Δ[P〈1〉] ≈ 0.000584, Δ[P〈2〉] ≈
0.000080, Δ[m1] ≈ 0.000728, Δ[m2] ≈ 0.001076; if i0 =
0, 1, . . . , 7 and i1, i2 = 0, 1, . . . , 15 then Δ[P〈1〉] ≈ 0.000046,
Δ[P〈2〉] ≈ 0.000006, Δ[m1] ≈ 0.000086, Δ[m2] ≈ 0.000121.

V. CONCLUSION

The proposed method for the analysis problem of switching
diffusions is the effective implement for the construction of regular
approximate solution methods and algorithms for the stochastic
control systems. The efficiency and accuracy of the suggested method
is demonstrated by the example given above.

It is possible to transform partial differential equations into the
linear algebraic equations by means of the spectral characteristic
calculation upon each variable separately and also to obtain their
tensor products [13], [14]. This approach allows to increase the
efficiency of computations.

APPENDIX

MULTIDIMENSIONAL MATRIX OPERATIONS

1. Let α, β ∈ R and let A(p, q) = [ai1...ipj1...jq ] and B(p, q) =
[bi1...ipj1...jq ] be the infinite (p + q)-dimensional matrices. The
expression αA(p, q) + βB(p, q) is the infinite (p + q)-dimensional
matrix C(p, q) = [ci1...ipj1...jq ] if ci1...ipj1...jq = αai1...ipj1...jq +
βbi1...ipj1...jq , i1, . . . , ip, j1, . . . , jq = 0, 1, 2, . . . .

2. Let A(p, r) = [ai1...ipk1...kr ] and B(r, q) = [bk1...krj1...jq ] be
the infinite (p + r)-dimensional and (r + q)-dimensional matrices,
respectively. The product A(p, r) · B(r, q) is the infinite (p + q)-
dimensional matrix C(p, q) = [ci1 ...ipj1...jq ] if

ci1...ipj1...jq =
∞∑

k1,...,kr=0

ai1...ipk1...krbk1...krj1...jq < ∞,

i1, . . . , ip, j1, . . . , jq = 0, 1, 2, . . . .

An infinite 2p-dimensional matrix E(p, p) is said to be the identity
matrix if A(p, p) · E(p, p) = E(p, p) · A(p, p) = A(p, p) for each
2p-dimensional matrix A(p, p).

3. Let A(p, p) be an infinite 2p-dimensional matrix. An infinite
2p-dimensional matrix B(p, p) is said to be the two-sided inverse
of A(p, p) if A(p, p) · B(p, p) = B(p, p) · A(p, p) = E(p, p). We
will use the notation A−1(p, p) to denote the two-sided inverse of
A(p, p).

4. Let A(p, q) = [ai1...ipj1...jq ] and B(r, s) = [bk1...krl1...ls ]
be the infinite (p + q)-dimensional and (r + s)-
dimensional matrices, respectively. The tensor product
A(p, q) ⊗ B(r, s) is the infinite (p + r + q + s)-dimensional
matrix C(p + r, q + s) = [ci1...ipk1...krj1...jql1...ls ]
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Fig. 1. Nonnormalized probability densities φ〈1〉(t, x1, x2) and
φ〈2〉(t, x1, x2).

Fig. 2. Functions P〈1〉(t) and P〈2〉(t).

Fig. 3. Functions m1(t) and m2(t).

if ci1...ipk1...krj1...jq l1...ls = ai1...ipj1...jq bk1...krl1...ls ,
i1, . . . , ip, k1, . . . , kr, j1, . . . , jq , l1, . . . , ls = 0, 1, 2, . . . .

5. Let A(p, q) = [ai1...ipj1...jq ] be an infinite (p + q)-
dimensional matrix. An infinite (q+p)-dimensional matrix B(q, p) =
[bj1...jqi1...ip ] is said to be the transpose of A(p, q) if bj1...jqi1...ip =
ai1...ipj1...jq , i1, . . . , ip, j1, . . . , jq = 0, 1, 2, . . . . We will use the
notation [A(p, q)]′ to denote the transpose of A(p, q).
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